Электричество

Электричество

(Electricity)


Понятие электричество, получение и применение электричества


Информация о понятии электричество, получение и применение электричества


Содержание

    Электричество — это понятие, выражающее свойства и явления, обусловленные структурой физических тел и процессов, сущностью которой является движение и взаимодействие микроскопических заряженных частиц вещества (электронов, ионов, молекул, их комплексов и т. п.). Правда есть и другая версия происхождения электроэнергии. Эта версия принадлежит Николе Тесле. В его теории электроэнергии основополагающим было понятие эфира — некой невидимой субстанции, заполняющей весь мир и передающей колебания со скоростью, во много раз превосходящей скорость света. Каждый миллиметр пространства, полагал Тесла, насыщен безграничной, бесконечной энергией, которую нужно лишь суметь извлечь.

    1.1 Электричество

    1.2 Ток

    1.3 Электроэнергия

    Из истории электротехники. "Сказка об электричестве". Века и люди. Тесла или Феррарис? Михаил Осипович Доливо-Добровольский

    Начнем наш рассказ словами самого Теслы, написавшего незадолго до смерти замечательный очерк истории электротехники "Сказку об электричестве": "Кто действительно хочет помять все величие нашего времени, тот должен познакомиться с историей науки об электричестве. И тогда он узнает сказку, какой нет и среди сказок "Тысячи и одной ночи".

    Впервые явления, ныне называемые электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Сохранившиеся предания гласят, что древнегреческому философу Фалесу Милетскому (640-550 гг. до н. э.) было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря - "электрон" - явление это позднее получило наименование электризации.

    Об янтаре в "Сказке" Теслы мы находим следующие поэтические строки: "Рассказ начинается задолго до начала нашей эры, в те времена, когда Фалес, Теофраст и Плиний говорили о чудесных свойствах "электрона" (янтаря), этого удивительного вещества, возникшего из слез Гелиад, сестер несчастного юноши Фаэтона, который пытался овладеть колесницей Феба и едва не сжег всю землю" Однако, создав поэтические легенды о янтаре, греки не продолжали изучения его свойств. Римляне ничего не прибавили к знаниям древних греков, а в средние века было забыто и то, что знали о янтаре в древнем мире. Только в конце XVI века придворный врач английской королевы Елизаветы Уильям Гильберт изучил все, что было известно о свойствах янтаря древним народам, и сам провел немало опытов с янтарем и магнитами. В 1600 году он издал большой труд "О магните, магнитных телах и о самом большое магните - Земле" - настоящий свод знаний того времени об электричестве и магнетизме.

    Гильберт впервые обнаружил, что свойства электризации присущи не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кость, не электризуются, и разделил все тела, встречающиеся в природе, на электризуемые и неэлектризуемые. Обратив особое внимание на первые, он производил опыты по изучению их свойств. В середине XVII века известный немецкий ученый, бургомистр города Магдебурга, изобретатель воздушного насоса Отто фон Герике построил специальную "электрическую машину", представлявшую шар из серы величиной с детскую голову, насаженный на ось. Если при вращении шара его натирали ладонями рук, он вскоре приобретал свойство притягивать и отталкивать легкие тела. На протяжении нескольких столетий машину Герике значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к ряду важных открытий: в 1707 году французский физик дю Фей обнаружил различие между электроэнергией, получаемым от трения стеклянного шара (или круга) и получаемым от трения крута из древесной смолы. В 1729 гаду англичане Грей и Уилер обнаружили способность некоторых тел проводить электричество и впервые указали на то, что все тела можно разделить на проводники и непроводники электроэнергии.

    Но значительно более важное открытие было описано в 1729 году Мушенбреком - профессором математики и философии в городе Лейдене. Он обнаружил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электричество. Заряженное до определенного потенциала (понятие о котором появилось значительно позднее), это устройство могло быть разряжено со значительным эффектом - большой искрой, производившей сильный треск, подобный разряду молнии, и оказывавшей физиологические действия при прикосновении рук к обкладкам банки. От названия города, где производились опыты, прибор, созданный Мушенбреком, был назван лейденской банкой. Исследования ее свойств производились в различных странах и вызвали появление множества теорий, пытавшихся объяснить обнаруженное явление конденсации заряда.

    Одна из теорий этого явления была дана, выдающимся американским ученым и общественным деятелем Вениамином Франклином, который указал на существование положительного и отрицательного электроэнергии. С точки зрения этой теории Франклин объяснил процесс заряда и разряда лейденской банки и доказал, что ее обкладки можно произвольно электризовать разными по знаку электрическими зарядами.

    Франклин, как и русские ученые М. В. Ломоносов и Г. Рихман, уделил немало внимания изучению атмосферного электроэнергии, грозового разряда (молнии). Как известно, Рихман погиб, производя опыт по изучению молнии.

    Работы русских академиков Эпинуса, Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество в состоянии неподвижном или мгновенный раз ряд его, то есть свойства статического электроэнергии. Движение его проявлялось лишь в форме разряда. Об электрическом токе, то есть о непрерывном движении электроэнергии, еще ничего не было известно.

    Практическое значение накопленных за два столетия знаний об электричестве было сравнительно невелико. Это объясняется тем, что потребности практики, промышленности не выдвигали перед наукой требований познания электроэнергии и изучения возможности его использования. "Об электричестве мы узнали кое-что разумное только с тех пор, как была открыта его техническая применимость", - писал Энгельс в письме к Г. Штаркенбургу 25 января 1894 года.

    Самым крупным открытием в этой области в XVIII веке было обнаружение в 1791 году итальянским анатомом Луиджи Гальвани появления электроэнергии при соприкосновении двух разнородных металлов с телом препарированной лягушки. Сам Гальвани ошибочно считал, что это явление вызывается наличием особого животного электроэнергии.

    Но вскоре другой итальянский ученый, Алессандро Вольта, дал иное объяснение этим опытам. Он экспериментально доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи.

    Эта теория, разработанная А. Вольтой в 1794 году, позволила создать первый в мире источник электрического тока в виде так называемого Вольтова столба. Последний представлял набор кружков из двух металлов (купрума и цинка), разделенные прокладками из войлока, смоченного в соляном растворе или щелочи. Описание этого прибора, изготовленного в конце 1799 года, дано в письме А. Вольты к президенту Лондонского королевского общества Банксу от 20 марта 1800 года. Надо заметить, что и Гальвани был недалек от истины: как это установили позднее, в любом организме жизненные процессы сопровождаются возникновением электроэнергии, которое с полным основанием может быть названо животным, не имеющим, однако, ничего общего с электроэнергией, открытым самим Гальвани.

    Одним из первых глубоко исследовал свойства электрического тока в 1801 -1802 годах петербургский академик В. В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.

    Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В конце 1819 года это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1820 года опубликовал на латинском языке брошюру под заглавием "Опыты, касающиеся действия электрического конфликта на магнитную стрелку". В этом сочинении "электрическим конфликтом" был назван электрический ток.

    Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках. Сами опыты его были повторены осенью 1820 года швейцарским естествоиспытателем де ля Ривом на съезде естествоиспытателей в Женеве. На этом съезде присутствовал член Парижской Академии наук Араго, который по возвращении показал в заседании академии опыт Эрстеда. Еще до конца 1820 года Араго провел ряд исследований, из которых наиболее важным было открытие в 1824 году явления увлечения медного диска вращающимся вблизи него магнитом. Это явление, названное "магнетизмом вращения", долгое время оставалось лишь эффектным физическим опытом. Но позднее именно оно послужило основой многих практических изобретений и, в частности, электродвигателя переменного тока.

    Большое значение имели также открытие Био и Саваром законов действия тока на магнитную стрелку. Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера, положившего начало изучению динамических действий электрического тока и установившему целый ряд законов электродинамики.

    Едва лишь Араго продемонстрировал на заседании Парижской Академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер докончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.

    Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.

    Через пять лет после первых работ Ампера был построен первый электромагнит и началось глубокое изучение законов электромагнетизма. В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электроэнергии, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток; в 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях.

    Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение пофизиканной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: "Превратить магнетизм в электричество". Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики.

    Исследование Фарадея и работы русского академика Э. X. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

    Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение Р. М.

    Действительно, спустя почти полгода Р. М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений. Машина Р. М. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению и величине.

    Почти одновременно с Р. М. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный - так называемфизикилектор. Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов - напряжение в них то возрастало, то снижалось, вызывая неприятные толчки.

    В 1870 году Зенобей Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму. Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя.

    С этого времени начинается быстрый рост применения электродвигателей и все расширяющееся потребление электричества, чему немало способствовало изобретение П. Н. Яблочковым способа освещения с помощью так называемой "свечи Яблочкова" - дуговой электролампы с параллельным расположением углей.

    Простота и удобство "свечей Яблочкова", заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре "свет Яблочкова", "русский" или "северный" свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы Российской Федерации и даже древние города Камбоджи. Это было подлинным триумфом русского- изобретателя.

    Но для питания этих свечей электричеством потребовалось создание особых электрогенераторов, дающих не постоянный, а переменный ток, то есть ток, хотя бы и не часто, но непрерывно меняющий свою величину и направление. Это было необходимо потому, что угли, соединенные с разными полюсами генератора постоянного тока, сгорали неравномерно - анод, подключенный к положительному, сгорал вдвое быстрее катода. Переменный ток попеременно превращал анод в катод и тем самым обеспечивал равномерное сгорание углей. Специально для питания "свечей Яблочкова" и был создан самим П. Н. Яблочковым, а затем усовершенствован французскими инженерами Лонтеном и Граммом генератор переменного тока. Однако о двигателе переменного тока еще не возникало и мысли.

    Вместе с тем для раздельного питания отдельных свечей от генератора переменного тока изобретателем был создан особый прибор - индукционная катушка (трансформатор), позволявший изменять напряжение тока в любом ответвлении цепи в соответствии с числом подключенных свечей. Вскоре растущие потребности в электричества и возможности получения ее в больших количествах вступили в противоречие с ограниченными возможностями передачи ее на расстояние. Применявшееся в то время низкое напряжение (100-120 вольт) постоянного тока и передача его по проводам сравнительно небольшого сечения вызывали огромные потери в линиях передачи. С конца 70-х годов прошлого столетия основной проблемой, от успешного решения которой зависело все будущее электротехники, стала проблема передачи электричества на значительные расстояния без больших потерь.

    Первое теоретическое обоснование возможности передачи любых количеств электричества на любые расстояния по проводам сравнительно небольшого диаметра без значительных потерь путем повышения напряжения было дано профессором физики Петербургского лесного института Д. А. Лачиновым в июле 1880 года. Вслед за этим французский физик и электротехник Марсель Депре в 1882 году на Мюнхенской электротехнической выставке осуществил передачу электричества в несколько лошафизикисил на расстояние 57 километров с коэффициентом полезного действия в 38 процентов.

    В истории передачи электричества на дальние расстояния эта первая передача из Мисбаха в Мюнхен имеет особое значение - на нее обратили внимание Маркс и Энгельс, живо интересовавшиеся опытами М. Депре. Их переписка об этих опытах, как и письмо Энгельса к Э. Бернштейну от 28 февраля 1883 года, содержит замечательное предсказание социальной и технической роли электрификации.

    Позднее Депре произвел еще ряд опытов, осуществив передачу электричества на расстояние в сотню километров и доведя мощность передачи до нескольких сот киловатт. Дальнейшее увеличение расстояния требовало значительного повышения напряжения. Депре довел его до 6 тысяч вольт и убедился, что изоляция пластин в коллекторе генераторов и электродвигателей постоянного тока не позволяет достигнуть более высокого напряжения.

    Несмотря на все эти трудности, в начале 80-х годов развитие промышленности и концентрация производства все более и более настоятельно требовали создания нового двигателя, более совершенного, чем широко распространенная паровая машина. Уже было ясно, что электростанции выгодно строить вблизи месторождений угля или на реках с большим падением воды, в то время как фабрики возводить поближе к источникам сырья. Это зачастую требовало передачи огромных количеств электричества к объектам ее потребления на значительные расстояния. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. На помощь пришли переменный ток и трансформатор: пользуясь ими, стали производить переменный ток низкого напряжения, затем повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках. Но... снова возникало "но"...

    Еще не существовало электродвигателей переменного тока. Л ведь уже в начале 80-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все чаще и чаще. Создать электродвигатель, который мог бы работать на переменном токе, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили: еще в 1824 году Араго демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации "магнетизма вращения". Медный (не магнитный) диск увлекался вращающимся магнитом.

    Возникла идея, нельзя ли, заменив диск витками обмотки, а вращающийся Магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля?

    В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны, либо сложны и ненадежны. Не был еще найден сам принцип постройки простых экономичных и надежных электродвигателей переменного тока.

    Именно в этот период и начал, как мы уже знаем, поиски решения этой задачи Никола Тесла. Он шел своим путем, путем размышлений над сущностью опыта Араго, и предложил коренное решение возникшей проблемы, сразу же оказавшееся приемлемым для практических целей. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины.

    Построив специальный источник двухфазного тока (двухфазный генератор) и такой же двухфазный электродвигатель, Тесла осуществил свою идею. И хотя конструктивно его машины были весьма несовершенны, принцип вращающегося магнитного поля, примененный в первых же моделях Теслы, оказался правильным.

    Рассмотрев все возможные случаи сдвига фаз, Тесла остановился на сдвиге в 90°, то есть на двухфазном токе. Это было вполне логично - прежде чем создавать электродвигатели с большим числом фаз, следовало начать с тока двухфазного. Но можно было бы применить и другой сдвиг фаз: на 120 е (трехфазный ток). Не проанализировав теоретически и не осмыслив все возможные случаи, даже не сравнив их между собой (вот в чем большая ошибка Теслы), он все свое внимание сосредоточил на двухфазном токе, создав двухфазные генераторы и электродвигатели и лишь мельком упомянул в своих патентных заявках о многофазных токах и возможности их применения.

    Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилео Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн. Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них, цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света.

    Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики.

    Феррарис не ограничился этой моделью. Во второй, более совершенной модели ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт.

    Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, это использовать его для измерения силы тока, и даже начал конструировать такой прибор.

    18 марта 1888 года в Туринской Академии наук Феррарис сделал доклад "Электродинамическое вращение, произведенное с помощью переменных токов". В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Теслы в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Теслы перед Феррарисом. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Теслы.

    На утверждение Феррариса, что работы по иприоритетеащающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Теслы, так же как и последний не мог знать о работах итальянского физика.

    Гораздо важнее то, что Г. Феррарис, открыв явление вращающегося магнитного поля и построив свою модель мощностью в 3 ватта, и не думал об их практическом использовании. Более того: если бы ошибочный вывод Феррариса о нецелесообразности применения переменных многофазных токов был принят, то человечество еще несколько лет было бы направлено по ложному пути и лишено возможности широкого использования электричества в самых различных отраслях производства и быта. Заслуга Николы Теслы и заключается в том, что, несмотря на множество препятствий и скептическое отношение к переменному току, он практически доказал целесообразность применения многофазного тока. Созданные им первые двигатели двухфазного тока, хотя и имели ряд недостатков, привлекли внимание электротехников всего мира и возбудили интерес к его предложениям.

    Однако статья Галилео Феррариса в журнале "Атти ди Турино" сыграла огромную роль в развитии электротехники. Ее перепечатал один крупный английский журнал, и номер с этой статьей попал в руки другого ученого, теперь заслуженно признанного создателем современной электротехники трехфазного тока.

    В один из июльских дней 1888 года статью Феррариса в английском журнале с увлечением читал молодой еще, всего лишь за четыре года до этого окончивший Дармштадтское Высшее техническое училище, русский инженер Михаил Осипович Доливо-Добровольский.

    Михаил Осипович родился в Российской Федерации, в Гатчине - одном из живописных пригородов Петербурга, в семье чиновника. Десяти лет он вместе с родителями переехал в Одессу, где его отец, выйдя в отставку, начал издавать прогрессивную газету "Правда". К участию в этой газете он привлек многих передовых деятелей русской и мировой литературы, и вскоре газета эта за непозволительный образ мыслей была закрыта.

    В этот период в семье Доливо-Добровольских сильно развилось критическое отношение к царскому строю, и юноша Добровольский отличался от своих сверстников если не революционными, то, во всяком случае, передовыми взглядами.

    В 1880 году Михаил Осипович окончил Одесское реальное училище и осенью того же года поступил на химический факультет Рижского политехнического института. Но недолго пришлось ему быть студентом этого учебного заведения: весной 1881 года, после убийства царя Александра II, многих революционно настроенных студентов русских университетов и других высших учебных заведений уволили без права продолжать учение в Российской Федерации. В число их попал и Михаил Осипович.

    В конце 1881 года Доливо-Добровольский поступил на химический факультет Дармштадтского высшего технического училища, но сразу же больше чем химией увлекся новым тогда предметом - электротехникой. В Дармштадте курс электротехники читал профессор Китлер, прекрасный педагог, имевший богатый практический опыт, сумевший не только увлечь М. О. Доливо-Добровольского, но и дать ему порядочный запас знаний.

    Отлично окончивший курс Дармштадтского высшего технического училища, Доливо-Добровольский был приглашен в Германскую эдисоновскую организацию и в 1884 году начал работу на одном из ее заводов. Глубокий и вдумчивый инженер, он хорошо представлял себе все недостатки постоянного тока и не раз размышлял о возможности создания электродвигателей переменного тока.

    Михаил Осипович немало думал над этой задачей, не раз пытался превратить электродвигатель постоянного тока Грамма в машину переменного тока, - мы помним, что примерно в это время той же проблемой занимался и Никола Тесла.

    Статья Феррариса произвела на М. О. Доливо-Добровольского исключительное впечатление, и еще во время чтения он представил себе принцип действия электродвигателя, основанного на использовании явления вращающегося магнитного поля. Ошибка Феррариса в расчете коэффициента полезного действия была найдена также мгновенно, и для Михаила Осиповича не оставалось сомнений в возможности быстрого решения проблемы применения переменного тока. Но уже с самого начала М. О. Доливо-Добровольский оцепил все преимущества трехфазного тока перед двухфазным, примененным Теслой и Феррарисом, и начал конструировать электродвигатели трехфазного переменного тока. Так появился опасный соперник двухфазного тока, скоро показавший ряд неоспоримых преимуществ перед своим близнецом.

    2.1Электротехника

    2.2 Из истории электротехники

    2.3 История электротехники

    Откуда берется электрический заряд?

    Если у вас подошва из резины или синтетиче­ского материала, и вы прошлись по ковру, то, прикоснувшись к металлической ручке двери, вы почувствуете легкий удар током. Эта означает, что ваше тело при трении подошв о ковер успело зарядиться электроэнергией,

    Иногда человек испытывает удар током, выходя из машины и закрывая дверь. Вероят­ней всего, на нем шерстяная или хлопчатобу­мажная одежда, которая наэлектризовалась от синтетического сиденья машины. Если к тому же у него подошвы из резины или син­тетики, которые являются изоляторами, то заряд может выйти только в момент прикос­новения к металлической ручке. Чтобы избе­жать этого, можно попробовать дотронуться до чего-нибудь металлического еще внутри машины перед выходом. Тогда заряд умень­шится и неприятного удара не последует,

    Все атомы окружены облаком электронов, которые несут отрицательный (-) электрический заряд. Электроны движутся вокруг ядра. Ядро обладает таким же суммарным заря­дом, как и все его электроны, но это заряд по­ложительный (+). Обычно положительный и отрицательный заряды уравновешивают друг друга, и атом является электрически нейтраль­ным. Но у некоторых веществ часть внешних электронов имеет довольно непрочные связи с их атомами. И если потереть два предмета друг о друга, то такие электроны могут освободить­ся и перекочевать на другой предмет. В результате этого перемещения у одного предмета электронов становится больше, чем должно быть, и он приобретает отрица­тельный (-) заряд. У второго предмета элек­тронов становится меньше, так что он при­обретает положительный (+) заряд. Заряды, формирующиеся подобным образом, назы­вают иногда «электроэнергией трения», Какой из предметов приобретет положительный или отрицательный заряд, зависит от отно­сительной легкости, с какой электроны передвигаются в поверхностных слоях двух предметов.

    Если натереть шерстяной тряпкой поли­этиленовую леску, то она получит отрица­тельный заряд, а если натереть органическое стекло, то оно получит положительный заряд. В любом случае тряпка получит заряд, проти­воположный заряду натертого материала.

    Электрические заряды влияют друг на друга. Положительный и отрицательный за­ряды притягиваются друг к другу, а два отри­цательных или два положительных заряда от­талкиваются друг от друга. Если поднести к предмету отрицательно заряженную леску, отрицательные заряды предмета переместят­ся на другой его конец, а положительные за­ряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс на­зывается электростатической индукцией, и о предмете говорят, что он попадает в электро­статическое поле лески.

    Майкл Фарадей доказал, что, электричест­во трения и электрический ток - одно и то же. Он также доказал, что электрическое поле не может существовать внутри металлической клетки (теперь называемой клеткой Фарадея).

    3.1 Электрический заряд

    3.2 Заряд электричества

    3.3 Заряд

    Применение электроэнергии

    Современная жизнь немыслима без радио и телевидения, телефонных аппаратов и телеграфа, всевозможных осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока.

    Открытие электрического тока и всех последующих открытий, связанных с ним, можно отнести к концу XIX- началу XX веков. В это время по всей Европе и в том числе Российской Федерации прокатилась волна открытий, связанных с электроэнергией. Пошла цепная реакция, когда одно открытие открывало дорогу для последующих открытий на многие десятилетия вперёд.

    Начинается внедрение электроэнергии во все отрасли производства, появляются электрические двигатели, телефон, телеграф, радио, электронагревательные приборы, начинается изучение электромагнитных волн и влияние их на различные материалы, внедрение электроэнергии в медицину.

    Удивительный XIX век, заложивший основы научно-технической революции, так изменившей мир, начался с гальванического элемента - первой батарейки, химического источника тока (вольтова столба). Этим чрезвычайно важным изобретением итальянский учёный А. Вольта встретил новый 1800 год. Вольтов столб позволил вести систематическое изучение электрических токов и находить им практическое применение.

    В XIX веке электротехника выделилась из физики в самостоятельную науку.

    Над закладкой её фундамента трудилась целая плеяда ученых и изобретателей. Датчанин Х. Эрстед, француз А. Ампер, немцы Г. Ом и Г. Герц, англичане М. Фарадей и Д. Максвел, американцы Д. Генри и Т. Эдисон - эти имена мы встречаем в учебниках физики (в честь некоторых из них названы единицы электрических величин).

    XIX век щедро одарил человечество изобретениями и открытиямифизикиасти технических средств коммуникации. В 1832 году член-корреспондент Петербургской Академии наук Павел Львович Шиллинг в присутствии императора продемонстрировал работу изобретённого им электромагнитного телеграфа, чем положил начало проводной связи. В 1876 году Александр Белл изобрёл тефизики В 1859 году братья Луи и Огюст Люмьеры дали первый киносеанс в Париже, а Александр Степанович Попов в Петербурге публично демонстрировал передачу и приём электрических сигналов по радио.

    Не зря XIX век назвали веком электроэнергии. В 1867 году Зеноб Грамм (Бельгия) построил надёжный и удобный в эксплуатации электромашинный генератор, позволяющий получать дешевую электроэнергию, и химические источники отошли на второй план. А в 1878 году на улицах Парижа вспыхнул ослепительный "русский свет" - дуговые лампы конструкции Павла Николаевича Яблочкова. Закачались стрелки на приборах первых электростанций.

    Возможности электроэнергии поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую…

    Электричество, возникающее в результате трения, или статическое электричество, ис­пользуется человеком самым разным обра­зом. Частицы сажи, пепла и им подобных твердых веществ вместе с дымом выбрасыва­ются многочисленными предприятиями в воздух, а затем возвращаются в виде осадков. Благодаря применению электростатических фильтров, устанавливаемых в трубах, при­близительно 98% твердых веществ можно за­держать и удалить, пока они не попали в воз­дух. Этот процесс называется электростати­ческим пылеулавливанием. Ежегодно в США подобным образом предупреждается выброс в воздух 20 миллионов тонн сажи. При покраске автомобилей и воздушного транспорта пользуются специальной систе­мой распыления. Однако при этом каждый раз испаряется до 25% краски. Этого можно избежать, сообщив распыляемым частицам электрический потенциал. Наэлектризован­ные частицы краски начинают притягиваться к поверхности машины или самолета и луч­ше держатся. Экономия при эффективном использовании системы распыления превы­шает издержки на зарядное оборудование.

    Та же самая техника используется и при нанесении порошковых покрытий. Наэлектризованное покрытие словно прилипает к металлу, а при нагревании поверхности по­рошковое покрытие образует тонкий нераз­рывный слой.

    Электрический заряд и порошок исполь­зуются также в ксероксах. На линзу отражает­ся изображение текста или рисунка, которое надо скопировать. Этот черно-белый рису­нок переносится на бумагу как рисунок из за­ряженных и нейтральных участков. Когда по бумаге рассеивается черный порошок, он притягивается исключительно к заряженным участкам. Затем под действием горячего воз­духа порошок закрепляется на бумаге. Такая техника копирования называется ксерографией. Она также используется в факсимиль­ных аппаратах.

    4.1 Применение электричества

    4.2 Применение тока

    4.3 Применение электроэнергии

    4.4 Применение человеком электричества

    Открытие термоэлектричества

    В августе 1820 года все более или менее известные европейские физики, все научные общества и редакции физических журналов получили небольшую, писанную по-латыни брошюру. На обложке стояло ничего не говорящее название "Опыты по влиянию электрического тока на магнитную иглу" и мало что говорящая фамилия автора - Эрстед.

    Неизвестно, послал ли он брошюру своему приятелю Томасу Зеебеку; скорее всего, нет, потому что тот был медиком, а не физиком, но Зеебек все же имел возможность ознакомиться с достижением своего друга, поскольку состоял членом Берлинской академии и на одном из заседаний сообщение Эрстеда было оглашено. Не знаю также, что побудило Зеебека заняться повторением опытов по электромагнетизму - чувство дружбы, любознательность или пробудившийся вдруг серьезный интерес к физике. Он долгие годы занимался частной медицинской практикой в йене и Нюрнберге, в академию был избран лишь за два года до открытия Эрстеда; но кто его знает, может, за эти два года, присутствуя на заседаниях, где обсуждались успехи физической науки, он почувствовал к ней вкус. Впрочем, не надо забывать, что в те годы огромной пропасти между медициной, химией и физикой еще не было, и, кстати, сам Эрстед начинал тоже как фармацевт на медицинском факультете. Поэтому не исключено, что Зеебек руководствовался, помимо дружеского участия, смешанного с любопытством, еще и формулой: <если смог он, почему не смогу я>.

    Надо отдать ему должное: он смог повторить опыт своего датского друга. Проводил он эксперимент, как и следовало, с помощью вольтова столба, и все шло как по-писаному, но, когда он убрал приборы со стола, то, помимо чувства удовлетворения, осталось на душе какое-то смутное беспокойство. Словнофизикой-то должен вспомнить, а что, не знает. Не раз потом возвращался Зеебек мыслями к этому опыту, и каждый раз какое-то неясное чувство беспокоило его: ну что, что здесь не так, чего не хватает? Да вроде всего хватает - стрелка-то отклоняется. И лишнего ничего вроде нет. Компас нужен? Нужен. Соединительный провод нужен? Нужен. Вольтов столб? Тоже нуж... Стоп. Вот здесь, где-то здесь. Но что? Проклятая память! Ведь что-то хочется вспомнить. Столб как столб - две пластинки, прокладка, смоченная кислотой. Вся Европа работает на таких столбах, без них вообще бы не было современной физики. Если бы не гениальный Вольта... О господи, наконец-то! Вот оно. Вспомнил. Надо же так мучиться! Вольта - вот в ком все дело. Что значит - плохо учил физику. Ведь первые опыты Вольты - две металлические пластины без всякой жидкости, и ток тем не менее образовывался.

    Теперь Томас наконец сформулировал свою ускользавшую целый год мысль: а что, если попробовать получить магнетизм в проволоке, соединив два металла без жидкости, как это делал Вольта? Интересно, отклонится в этом случае стрелка? Или для нее имеет значение происхождение электроэнергии?

    Зеебек взял две пластинки, медную и висмутовую, и присоединил их к проводам мультипликатора. Это нехитрое устройство, его изобрел немецкий физик Швайгер сразу же после сообщения от Эрстеда. Намотанная в несколько слоев и покрытая шелковой изоляцией проволока намного усиливала магнитное действие тока.

    Когда Зеебек первый раз прикоснулся концами провода мультипликатора к сложенным пластинкам, магнитная стрелка не шелохнулась. Томас расстроился и обрадовался одновременно. Почему же не получается? Неужто имеет значение природа тока? Это ведь новое открытие. А может, просто контакт плохой? На всякий случай Зеебек решил еще раз повторить опыт, плотно прижав провода к пластинкам. Он наложил пальцы на их концы - и стрелка дрогнула. Он сильнее прижал пальцами провода - стрелка повернулась на несколько градусов. Ага, вот в чем дело: плохой контакт. Он смочил пальцы, чтобы улучшить контакт - стрелка отклонилась, но ровно на столько же. Опять чертовщина какая-то! Ведь смачивание всегда улучшает проводимость. Взял бумагу, намочил, наложил на концы проводов, прижал сверху руками. Вообще никакого эффекта. Просто мистика! Вынул бумагу из-под рук - пошла стрелка. Снова вложил - неподвижна. Да-а, опять тупик

    А что, если попробовать не бумагу, а стекло или металл? Взял два стеклышка, прижал ими провода к пластинкам, сверху надавил пальцами. Никакого впечатления. Раздосадованный тем, что ничего не понимает, собрался уж убрать руки, как вдруг заметил - дрогнула стрелка. И пошла, пошла потихонечку отклоняться. А сквозь металл? То же самое: сначала никакого эффекта, через некоторое время эффект налицо.

    Через некоторое время... Что же происходит за это время? Вроде бы ничего не происходит, нагревается только стекляшка или железка от руки, и все. Так, так. Нагревается. А в первом опыте рука сразу была теплой. Может, в этом все и дело - в тепле руки? Зеебек берет спиртовку, подносит ее к проводам, и магнитная стрелка сразу же резко поворачивает. Вот оно что! Теплота. Разность температур рождает в проводнике магнетизм. Значит, он, Томас Иоганн Зеебек, до пятидесяти лет ничем не прославивший себя и свой родной город Ревель (Таллин), открыл новое, замечательное явление - термомагнетизм.

    Шел 1821 год. Зеебек знал, что Эрстед, которому он косвенно был обязан своей случайной находкой, собирается вскоре на два года в Англию. А ему очень хотелось поделиться с ним удачей и обсудить необычные результаты. И Томас, не дожидаясь, пока выйдет из печати журнал со статьей, посылает Эрстеду сообщение о своем открытии. Тот немедля повторил опыт Зеебека и авторитетно подтвердил его. Причем, поскольку Эрстед узнал о новом открытии сразу же, как говорят теперь - из неофициальных источников, то его, Эрстеда, публикация даже обогнала сообщение самого автора. Разумеется, Эрстед сослался на приоритет своего друга. Но пошел в своих опытах дальше него.

    Прежде всего, Эрстед соорудил целый столб из металлических пар - наподобие столба Вольты, только без прокладок. Вскоре стало известно, что такой же столб построил и французский академик Жан Фурье. И он также пришел к выводу, что столб этот, являющийся, по существу, не чем иным, как новым источником электроэнергии, следует называть не термомагнитным, а термоэлектрическим.

    Но автор открытия неожиданно уперся - он не желал, чтобы обнаруженное им явление называли иначе,приоритетомагнетизм. Напрасно ученые многих стран доказывали в своих работах, что рождающееся вследствие разности температур электричество - самое обычное, такое же, как в столбе Вольты, что и действие оно оказывает точно такое же, в частности, разлагает химические вещества, дает искру при замыкании, - Зеебек не желал никаких перемен и еще, по меньшей мере, два года оставался в плену своих заблуждений. Это не мешало ему, правда, и дальше исследовать новое явление и даже обнаружить, что отклонение магнитной стрелки можно получить не только нагреванием пластинок, но и охлаждением. Однако в отличие от открытий Вольты, Эрстеда, Ампера новое открытие надолго осталось лишь забавным парадоксом. И хотя таким способом уже получали электрический ток, а в 1834 году бывший парижский часовщиксовершенно точноПелтье вызвал обратное явление - с помощью электрического тока охладил стержень, составленный из двух металлов, создав прообраз современного холодильника, - <эффект Зеебека>, как назвали термоэлектричество, так и оставался эффектным эффектом.

    5.1 История термоэлектричества

    5.2 Термоэлектричество

    5.3 Открытие термоэлектричества

    Открытие электромагнетизма

    В августе 1820 года все более или менее известные европейские физики, все научные общества и редакции физических журналов получили небольшую, писанную по-латыни брошюру. На обложке стояло ничего не говорящее название «Опыты по влиянию электрического тока на магнитную иглу» и мало что говорящая фамилия автора – Эрстед.

    Если бы каждый из ученых мог знать, что, кроме него, эту же брошюру держат в руках практически все европейские физики, ее стали бы читать тут же, как только вскрыли конверт. Потому что необычный способ информации означать мог только одно: случилось что-то необыкновенное.

    А необыкновенное и впрямь случилось. Причем необыкновенным здесь было все: и само открытие, и то, как оно было сделано, и даже то, что ничего необыкновенного в нем, как тут же выяснилось, не было.

    В 1806 году адъюнкт кафедры фармацевтики Копенгагенского университета Ганс Христиан Эрстед, 29 лет от роду, осуществил свою заветную мечту – получил звание профессора. Но не на своей кафедре, входившей в состав медицинского факультета, а на другой – на кафедре физики. Объяснялось это тем, что, знакомясь с научными лабораториями Европы во время своей двухгодичной командировки, Эрстед почувствовал большую склонность к наукам физическим и химическим и по возвращении в Копенгаген стал с усердием читать лекции именно по этим двум дисциплинам.

    Второе научное путешествие, тоже двухгодичное, еще более сблизило его с физикой и химией, он смог лично ознакомиться со многими выдающимися достижениями того времени, в частности с работами Вольты. Вернувшись в 1813 году в Данию, Эрстед продолжил преподавание физики, и никаких особо важных сведений о его деятельности того периода не имеется, из чего можно сделать вывод, что ничего особо интересного он в те годы и не сделал. Хотя после ему пришлось не раз доказывать, что и до этого времени его уже посещала одна новая, необычная идея и он работал над ее экспериментальным доказательством, но, мол, безрезультатно, до июня 1820 года, когда удача, наконец, посетила его скромнуфизикойаторию. Так это или не так, у нас еще будет случай обсудить – вместе с коллегами Эрстеда, которые делали это с немалым рвением.

    Пока же будем придерживаться точно известных фактов. А они говорят о том, что до мая 1820 года Эрстед занимался тем, что изучал возникновение тепла под действием электрических разрядов. А если сказать проще, он соединял полюсы вольтовой батареи проволокой, наблюдал, как она нагревается, иногда даже раскаляется докрасна, и раздумывал, что же при этом происходит с электроэнергией. Ход его мыслей, как он сам излагал его, был следующий. Раз проволока соединяет противоположные полюса, значит, в ней смешиваются каким-то образом противоположные заряды. Ну хорошо, смешались они, а дальше что? Совсем исчезнуть они вроде бы не могут, но вмаккуратс тем собственно электрических проявлений тоже не заметно. Не значит ли это, думал Эрстед, что электричество переходит в какую-то иную форму? И не следует ли отсюда, что этот скрытый вид электроэнергии, заключенный в раскаленной проволоке, может оказать какое-нибудь действие на Магнит?

    И вот эта новаторская мысль, взрывающая всю тогдашнюю физику, и посетила скромного датского профессора где-то перед 1820 годом – по словам самого скромного датского профессора. Я не призываю безоговорочно довериться им, ибо существуют воспоминания его ассистента, где утверждается вовсе иное, а именно: что влияние электроэнергии на Магнит профессор увидел совершенно случайно на лекции, когда демонстрировал своим слушателям вольтов столб, а рядом лежала магнитная стрелка, а уж только после этого случая его посетила та самая новаторская мысль. Различие существенное: в одном случае ученый выдвинул гипотезу и должен был ее доказать, в другом – он случайно наблюдал экспериментальный парадокс и должен был выдвинуть теорию для его объяснения.

    Кто прав, где истина, сейчас трудно установить. Если бы Эрстед действительно выдвинул новую гипотезу, причем не просто новую, а гениальную, означающую новую эру в физике, он должен был, как всякий разумный человек, я уж не говорю – тщеславный, эту мысль тут же попытаться каким-то образом доказать. А этого-то он как раз и не сделал. Сам признался потом: «Я не преследовал задуманную идею с тем рвением, какого она заслуживала». Возможно, тогда ему, помимо всего прочего, еще и неясно было, чего она заслуживает. Он пишет, правда, что высказал ее как-то перед студентами, но потом забыл. Странная забывчивость, если подумать, о чем идет речь. И лишь весной 1820 года, когда он читал курс по гальванизму, электричеству и магнетизму, кто-то из учеников якобы напомнил ему о его идее. И только тогда уж он решил взяться как следует за ее экспериментальное доказательство. Но, мы скоро убедимся, именно как следует он этого и не сделал.

    Мне кажется, тут возможна и третья версия: Эрстед и впрямь предчувствовал новое открытие, устанавливающее связь между электроэнергией и магнетизмом, и, возможно, действительно говорил об этом студентам, но не знал, как это доказать. Ведь умение построить эксперимент требует не меньшей проницательности, чем создание умозрительной гипотезы, А не зная, как доказать, не приступал к экспериментам, ограничивался только размышлениями на эту тему. А счастливый случай на лекции указал этот скрытый путь. И тогда уже все завертелось, закрутилось. По записям самого Эрстеда трудно судить о последовательности его действий. По его словам, когда ему напомнили о забытой идее, он сразу решил проверить ее в опыте. Он пишет, что приготовления к нему сделал в тот день, когда собирался читать очередную лекцию, она должна была состояться вечером следующего дня. В чем заключалось приготовление, тоже неясно. Судя по теме той лекции, никаких особых приготовлений и не требовалось. Вечером Эрстед собирался демонстрировать влияние грозы на магнитную стрелку (был май, месяц гроз), а также некоторые опыты с участием вольтова столба. Следовательно, всё, что потребовалось для открытия электромагнетизма – источник электроэнергии, провод, по которому оно течет, и магнитная стрелка, – всё, это вечером стояло на демонстрационном столе. Тем не менее, Эрстед утверждает, что на той лекции он решил продемонстрировать слушателям свою идею в действии. Он поместил между проводами, идущими от полюсов батареи, тонкую платиновую проволоку, так как ему казалось, что наибольший эффект должен произойти, если провод раскален, а под проволоку поместил магнитную стрелку. Стрелка и впрямь качнулась, как и надеялся ученый, но столь слабо, что он не посчитал этот опыт удачным и отложил свою затею до другого времени, когда, как он пишет, «надеялся иметь больше досуга». Странное признание. Что-то здесь не так или в тот вечер стрелка шевельнулась только в воображении Эрстеда, или он еще не понимал, что означает этот поворот – поворот в науке, – иначе было бы логичнее не откладывать опыт почти на месяц, а отложить лекцию и повторять, повторять эксперимент весь вечер, всю ночь.

    Вместо этого Эрстед спокойно дочитал лекцию, спокойно отправился домой и так же спокойно на другой день приступил к ежедневным обязанностям. И только в начале июля повторил неудавшийся опыт, на этот раз, правда, вполне удачно. И тогда меньше чем за три недели он выполнил все свое знаменитое ныне исследование, выполнил тщательно, досконально, и так же обстоятельно и досконально описал открытое явление, и не по-датски, а по-латыни, и не в одном экземпляре, а в десятках, и к 21 июля все было кончено.

    Как-то странно все: сначала неторопливая многомесячная раскачка, а потом вдруг бешеный, двухнедельный рывок. По-моему, это может иметь только одно объяснение: в какой-то день Эрстед должен был заметить нечто, изменившее отношение его к планам, развязавшее его инициативу, и наиболее вероятным кажется здесь как раз то случайно увиденное явление, о котором писал его ассистент.

    Эти умозаключения, слегка смахивающие на детективные, кажутся, быть может, слишком сложными, но они покажутся совсем простыми, когда мы вслед за физиками пустимся в еще более глубокое расследование обстоятельств, предшествовавших открытию Эрстеда. Потому что после некоторого молчания, вызванного, вероятно, проверкой необыкновенного феномена, сообщенного датским физиком, во всех физических лабораториях поднялся настоящий ураган, в котором ясно различались крики о том, что Эрстед свою работу не только открыл случайно, но еще и украл. Чем не детектив?

    Но прежде чем пуститься его распутывать, ознакомимся с тем, из-за чего, собственно, разгорелся весь сыр-бор. Если говорить в двух словах, то Эрстед сообщил, что он наблюдал, как гальванический ток, идущий по проводу с севера на юг, отклоняет находящуюся под ним магнитную стрелку на запад; а если стрелка подвешена над проводом, то – на восток. В брошюре это сообщение занимало, конечно, больше места, оно состояло примерно из десяти параграфов, где давалось детальное описание эксперимента и всех его вариаций, с тем чтобы каждый мог легко все повторить. Помимо самого явления, Эрстед, несмотря на спешку, успел установить некоторые закономерности, сопутствующие «электрическому конфликту» – так он поначалу назвал открытое им проявление электромагнетизма.

    В частности, он отметил, что величина отклонения стрелки зависит от ее удаленности от провода и от силы вольтова столба; а материал, из которого сделан провод, значения не имеет. Далее было отмечено, что новая неведомая сила легко проходит сквозь преграды – металлические, деревянные, стеклянные. Чтобы физики легко запомнили, куда что отклоняется, Эрстед выводит формулу: «Полюс, над которым вступает отрицательное электричество, поворачивается на запад; полюс, под которым оно вступает, поворачивается на восток». Правда, оказалось, что усвоение самой формулы ненамного легче, чем описание всего опыта; некоторые физики даже назвали избранную им формулу неудобной и нецелесообразной. Если сравнить ее с правилом, приведенным в современном учебнике, то можно согласиться с такими определениями.

    И еще в одном Эрстед нечаянно напутал сам и запутал тем самым коллег: он утверждал, что для получения «электрического конфликтафизикиходимо, чтобы провод был раскален. Вероятно, это заблуждение и вызвало некоторую паузу после получения физиками мемуара Эрстеда, потому что раскалить провод можно только с помощью достаточно мощной батареи, а не у всех ученых таковые имелись. Но как только было обнаружено, что открытое явление происходит даже от двухфизикиин батареи, работы по электромагнетизму хлынули потоком.

    Повторилась та же история, что и с открытиями Гальвани и Вольты; как и тогда, новое открытие чрезвычайно просто проверялось: каждый, кто мог сделать вольтов столб и достать намагниченную иглу или компас, был в состоянии наблюдать невиданное доселе явление. «Электромагнитная лихорадка» захватила даже неспециалистов, все играли в новую игрушку, это стало модным, и даже ученые, хладнокровные ученые, оказались вовлеченными в общий психоз и, забросив все дела, занялись воспроизведением опыта Эрстеда.

    И вот тут среди общих возгласов восторга вдруг прозвучал первый ехидный вопрос: позвольте, а кто сказал, что открытие господина Эрстеда действительно открытие? Влияние электроэнергии на магниты давно открыто итальянцами Можоном и Романьози, еще в 1802 году.

    Тут все физики несколько остолбенели, вроде как в заключительной сцене «Ревизора», а опомнившись, бросились в библиотеки и стали лихорадочно листать физические журналы, трактаты, брошюры. И что же? В трактате уже известного нам племянника Гальвани синьора Альдини «О гальванизме», изданном в Париже в 1804 году, и в «Руководстве по гальванизму», написанном неким Изарном, и вправду говорилось о работах двух итальянских ученых, наблюдавших влияние электроэнергии на Магнит.

    Джузеппе Можон, профессор химии в Генуе, оказывается, вставлял тонкие швейные иглы между полюсами вольтова столба, держал их так двадцать дней, а потом вынимал уже намагниченными. А адвокат ифизикиста Джан Романьози, несколько пышно названный физиком, еще в августе 1802 года, манипулируя со столбом, только что изобретенным его соотечественником, пытался отклонять магнитную стрелку проводом, идущим от батареи, и вроде бы она отклонялась. Но как бы то ни было, нечто похожее на то, что сообщил Эрстед в 1820 году, действительно было опубликовано шестнадцать лет назад, и это дало повод многим физикам обвинить датского ученого в плагиате. В связи с этим, обвинение в меньшем грехе, в случайности было просто отброшено: одно из двух – украл или нашел.

    И чтобы не показалось, будто я несколько сгущаю краски, скажу, что спор этот растянулся по времени лет на сорок, а по масштабам – на всю Европу, от Франции до Российской Федерации.

    В чем уличали Эрстеда? Какими «уликами» располагали его обвинители? работы итальянских ученых были опубликованы сначала в самой Италии, но Эрстед мог их не читать в оригинале; так ведь они были переведены на французский, причем еще в 1804 году, а Эрстед был в Париже дважды, в 1803-м и 1813-м. В первый раз, допустим, говорили обвинители, он не мог видеть эти работы, но во второй приезд – вполне: он же занимался гальванизмом и брошюры – по гальванизму. Кто ж поверит, что он не читал их? Ясное дело, читал. И умолчал об этом. И приписал все себе. Вот так вот, дорогой господин Эрстед, делали вывод все те же обвинители, нехорошо получается.

    Если бы все было на самом деле так, то действительно получалось нехорошо. Даже совсем плохо: уличение в плагиате для ученого – конец. Но ревнители научной нравственности в полемическом пылу упустили из виду некоторые детали, которые, как мы хорошо знаем по детективным романам, часто играют важную роль.

    Среди физиков нашлось немало людей, которые, подобно Шерлоку Холмсу, комиссару Мегрэ или Эркюлю Пуаро, занялись сопоставлением этих самых мелочей, чтобы установить истину. В числе наиболее проницательных расследователей «дела Эрстеда» был русский академик И. Гамель.

    Предположим, что Эрстед и вправду читал эти работы еще в 1804 году, с того времени, как он стал заниматься электроэнергией. Но как тогда понять тот факт, что в своей книге «Взгляд на химические законы», написанной в 1812 году, он говорит о тождестве электроэнергии и магнетизма, но почему-то не приводит в доказательство ни единого опыта. А ведь по логике вещей, провозглашая новую теорию, он должен был бы сослаться на эксперименты Можона и Романьози – они ведь единственные подтверждали его правоту. Это первая накладка.

    Теперь вторая. Предположим, Эрстед решил умолчать о работах итальянцев и выдать их за свои. Но почему он не сделал этого раньше? Чего ждал шестнадцать лет? Чтобы кто-нибудь другой наткнулся на эти работы и повторил их раньше него? А если уж и ждал столько времени – обдумывал, размышлял, – то почему, решившись наконец опубликовать свою работу, привел свои наблюдения и выводы в такой неудобной форме, явно свидетельствующей о крайней поспешности? Поспешность после шестнадцати лет осторожного молчания – помилуйте!

    И, наконец, последнее. Если б Эрстед был плагиатором, какой резон был ему отказываться от версии случайного открытия? Зачем он с таким упорством доказывал, что думал об этом давно, зачем упоминал свою работу 1812 года, изданную в Париже, где он приводит эту мысль? Чтобы напомнить оппонентам, что он уже был в Париже и читал там трактаты по гальванизму? Это же абсурд! Ведь даже самый неискушенный читатель детективов знает, что преступник нередко специально берет на себя вину за более мелкий проступок, чтобы избежать следствия по основному своему делу. Эрстед, конечно, не преступник и, конечно, мог и не читать романы данного жанра, но логика – качество, свойственное каждому ученому, – должна была бы подсказать ему выход из щекотливого положения, если он считал его действительно щекотливым; согласись со случайностью, признай: да, совершенно случайно обнаружил, тогда уж никто не сможет сказать, что он это открытие где-то у кого-то вычитал. Но вместо этого Эрстед, явно вредя себе, продолжает настаивать, что он работал над электромагнетизмом давно, но безуспешно.

    Отсюда можно сделать только один вывод, и Гамель делает его: «При всей моей готовности воздать должное заслугам Романьози, я в приведенных выше фактах не могу найти какого бы то ни было основания приписывать Эрстеду столь отвратительную роль».

    К такому же выводу, но в результате иных рассуждений приходит немецкий физик Георг Мунке. Он сообщил свое мнение публично в «Физическом словаре», выпущенном в 1827 году. Он написал там, что не следует приписывать открытие электромагнетизма «упомянутым двум лицам, так как они не сознавали важности своих наблюдений, не поняли их и не сумели оценить». Что ж, сурово, но справедливо.

    «Физический словарь» был весьма уважаемым изданием, им пользовались многие физики, и с такой формулировкой в конечном счете почти все согласились. И обвинение Эрстеда в плагиате отпало.

    А что касается случайности или неслучайности его открытия, то даже если считать, что счастливая случайность все же имела место, согласитесь, Эрстед сумел ею воспользоваться. В отличие, скажем, от того же Романьози, который хоть и пригрозил в конце статьи от 1802 года, что он еще подробно опишет свои удивительные открытия, но угрозы не исполнил. Говорят, что этому помешали его успехи на юридическом поприще: в 1802 году он получил кафедру права в Падуе, потом профессорствовал в Парме и Пизе. Что ж, это только подтверждает общее предположение – он не понял значения того, что увидел. Иначе, догадайся он, что за открытие стоит на пороге его дома, какая слава ждет его, не соблазнился бы меньшим, но сиюминутным успехом. Кстати, в 1817 году он оставил профессуру и стал, как говорили в старину, частным лицом, так что у него было еще три года, чтобы доделать начатое, если бы только в недостатке времени было дело. Но, вероятно, он и тогда не вернулся более к своим исследованиям. А может, просто ничего у него не получилось сверх того, что он уже описал. Словом, случай и на этот раз распорядился справедливо: он помог тому, кто этого вполне заслужил.

    Из этого не следует делать вывод, что пока одни ученые разбирались, кто сказал «а», все остальные сидели сложа руки и следили за перипетиями заочного следствия. Отнюдь нет! Истинные исследователи, которым сам факт открытия был гораздо важнее суетливой возни вокруг его авторства, не тратили время на досужие домыслы и на ожидание «крови», они устремились по пути, открытому Эрстедом, ибо понимали, что это только начало и что путь длинен, и труден, и полон новых неожиданностей.

    Всем было ясно, что Эрстед торопился опубликовать то, что увидел, и поэтому его наблюдения носили все же несколько поверхностный характер. Во всяком случае, они не устанавливали количественных закономерностей, связывающих электричество с магнетизмом. И это нужно было сделать в первую очередь.

    Но сначала, как всегда, последовала серия проверок – не ошибся ли в принципе Эрстед? Нас не интересует, кто первым подтвердил его опыт, хотя это и зафиксировано в анналах физики. Нас должна интересовать вторая демонстрация открытия Эрстеда, которую провел в августе этого же года на собрании натуралистов в Женеве 19-летний физик Август де ля Рив. Потому что на этом опыте случайно присутствовал член Французской академии Франсуа Араго, который, вернувшись в Париж 11 сентября, воспроизвел все увиденное перед членами академии, среди которых присутствовал Андре Мари Ампер – этот уж не случайно, так как состоял членом академии.

    Ампер, ученый, сделавший для электротехники едва ли не больше всех своих современников, был человеком очень странным. Многие ученые во все времена имели черты характера, делавшие их притчей во языцех, но Ампер в этом отношении превзошел средний тип рассеянности ученого. Правда, в легендах, которые распространяли о нем, было много домысла, граничащего с клеветой. Но все же, конечно, он был рассеян, предпочитал одиночество, имел неприятную для других привычку простодушно говорить все, что думал.

    Будучи близоруким, он мог на лекции спутать тряпку, чем стирают мел, с носовым платком. Однажды, уходя из гостей, он перепутал шляпы и надел вместо своей круглой треугольную, принадлежавшую какому-то важному духовному лицу. Естественно, на другой день он с извинениями отнес ее владельцу. Но все посчитали это не рассеянностью, а обдуманным поступком, имевшим целью завести полезное знакомство. Вот уж чего нельзя было ему инкриминировать!

    Он не только не заводил таковых, но часто из-за своего откровенного нрава портил даже существующие знакомства.

    Андре был чрезвычайно легковерен, и его часто разыгрывали, рассказывая ему совершенно невероятные истории. Он верил им – но не по глупости, а, как тонко заметил один из его друзей, потому, что легковерие его было плодом воображения и гениальности. В любой несуразности, в кажущейся бессмыслице он машинально находил какой-то смысл, какой-то порядок, какую-то только ему ведомую гармонию. Разумеется, это казалось забавным людям посредственным и завистливым, но именно поэтому не им, а Амперу удалось увидеть новые законы там, где их не видел никто.

    Такова судьба почти каждого талантливого человека: над ним смеются, когда он верит умышленным россказням, не имеющим смысла, и в то же время ему не верят, когда он сообщает нечто совершенно новое. Так, например, утверждение Ампера, что человек устроен по закону, общему для всех животных, вызывало в лучшем случае усмешки; его теория происхождения позвоночных животных никем не принималась всерьез, а между тем он в своих предвидениях был недалек от истины.

    У Ампера было тяжелое детство, нелегкая юность и одинокое существование даже в период наибольшей славы. Он рано потерял отца, которого казнили во время революции 1793 года. Андре было тогда восемнадцать лет, и эта казнь так потрясла его, что он почти год тяжело психически проболел. Его ничего не интересовало, он равнодушно целыми днями мог смотреть на небо или делать кучки из песка – это он, который еще недавно жадно всем интересовался, который в тринадцать лет прочел все двадцать томов энциклопедии и запомнил их на всю жизнь, потом немало удивляя людей своей поразительной осведомленностью о самых невероятных вещах! Но постепенно болезнь проходила, Ампер медленно возвращался к жизни, и немало способствовала этому его любовь к природе. Он много гулял, изучал растения, и, кстати, его ботанические наклонности сохранились на всю жизнь, и он иногда даже жалел, что не стал ботаником.

    Андре с детства был очень близорук, но не знал этого. Он не ведал, что мир выглядит совершенно иначе, чем он его воспринимает. Ему казалось в порядке вещей, что предметы уже в небольшом отдалении теряют четкие очертания, становятся размытыми. Однажды он ехал в карете с человеком, который был тоже близорук, но носил очки. Вероятно, видя, как щурится молодой человек, он предложил ему надеть свои очки. И то, что увидел сквозь них Ампер – новый, прекрасный, четкий, красочный мир, – так потрясло его, что он расплакался. Наверное, такого рода потрясения не могли не оказать влияния на формирование его характера.

    Научные склонности Ампера проявились довольно рано. О ботанических я уже говорил, позже к ним прибавились математические. Еще в тринадцать лет он представил в Лионскую академию сочинение о квадратуре круга – ему показалось, что он нашел решение старинной задачи о построении квадрата, равного по площади кругу, над которой безрезультатно бились такие титаны, как Архимед, Гюйгенс, Ньютон. В двадцать семь лет он опубликовал в Лионе сочинение по теории вероятностей. Называлось оно «Соображения о математической теории игры». Любопытно, из каких личных соображений взялся Андре именно за эту тему? Сама по себе она очень интересна и актуальна даже на сегодняшний день. Ею занимались в разное время многие математики из склонностей чисто теоретических, а не математики – из склонностей чисто практических. Дело в том, что она в какой-то мере давала ключ к пониманию карточных и прочих азартных игр, где выигрыш зависит не от умения, а от удачи. В своей работе Ампер математически доказывает, что, если два игрока, одинаково состоятельные, собираются играть или держать пари о чем-то, то размер их ставок должен быть пропорционален вероятности исхода. Если какое-то событие, за которое бьют заклад, случается в два раза чаще, чем другое, то и ставки должны быть сделаны 2:1. Собственно, это не было откровением ни для ученых, ни для спекулянтов, потому что положение это было сформулировано еще при Людовике XIV двумя великими французскими математиками – Паскалем и Ферма. Но Ампер, оттолкнувшись от общего положения, идет дальше. Первое правило относилось к двум спекулянтам с примерно одинаковым состоянием; Андре же доказывает, что его можно отнести к случаю, когда богатства спекулянтов или спорщиков неодинаковы, но количество политических партий или пари между ними столь ограничено, что не может полностью разорить даже самого бедного партнера. Однако стоит количеству игр возрасти, и правило Паскаля – Ферма теряет свою силу. Таким образом, Ампер математически доказывает, что человек, который в азарте готов играть с каждым подряд или с каждым подряд спорить, непременно и неумолимо разорится. И никакое счастье, везение, удача, счастливая звезда не смогут приостановить действие неотвратимых формул.

    Пересказ этой маленькой работы Ампера, не принесшей ему особой славы, а заблудшим азартным душам – особого успокоения, сделан лишь с одной целью: показать широту научных интересов молодого французского ученого; сам он в азартные игры не играл, вообще не был азартным человеком, поэтому данную работу можно рассматривать только как чисто теоретическое исследование.

    Однако косвенную пользу он все же извлек: благодаря хорошему впечатлению, которое она произвела на ученых, Амперу было предложено место в Политехнической школе в Париже. Правда, место довольно скромное – всего лишь репетитора, но все же это уже была столица с ее интенсивной научной жизнью.

    Ампер исполнял свои обязанности очень добросовестно, но, как я уже говорил, общее впечатление о нем было несколько подпорчено его странностями, которыми довольно безжалостно пользовались школьники. Их забавляло, что учитель писал не кистью руки, как все, а двигал всей рукой и смешно изгибался при этом. Видя, что их преподаватель из боязни, свойственной всем близоруким людям, пишет покрупнее, чтоб было видно всем, милые детишки стали тут же прикидываться сплошь близорукими и просить, чтобы он писал еще крупнее. Не подозревавший подвоха Ампер дошел до того, что на большой доске писал всего одно слово.

    Одновременно с преподаванием Ампер продолжал заниматься математикой, в частности геометрией. Им было опубликовано несколько работ на хорошем научном уровне, и хотя они не делали революции в геометрии, все же дали повод Французской академии избрать в 1813 году молодого ученого на место, освободившееся после смерти великого математика Лагранжа. Многие посчитали замену неравноценной, но через семь лет переменили свое мнение.

    Технология научного творчества всегда была и остается загадкой. Почему ученый вдруг избирает одну область деятельности, а не другую? Почему он в какой-то момент видит здесь возможность открытия? И еще десятки аналогичных «почему» приходят в голову, когда знакомишься с жизнью великого ученого, неожиданно свернувшего на новую для него дорогу. Двадцать лет Ампер занимался чем угодно, только не физикой, – ботаникой, психологией, лингвистикой, философией, зоологией, поэтикой, математикой, более всего математикой. А на двадцать первом занялся физикой и за одну неделю сделал в ней больше, чем другие за всю жизнь. Парадокс? На первый взгляд – похоже. Но если проанализировать ситуацию, то окажется, что никаких чудес нет. Если не считать чудом талант Ампера.

    Как вы помните, в начале сентября 1820 года академик Ф. Араго вернулся из Женевы, где он наблюдал опыт Эрстеда в исполнении де ля Рива. Вернулся он чрезвычайно возбужденный, ибо только что своими глазами видел рождение новой области физики – электромагнетизма. Он спешил в Париж, думая, вероятно, что и ему удастся внести свой вклад в новую, неизведанную область – и он не ошибся в этом, – и, вероятно, вовсе не думая, что через несколько дней он станет свидетелем рождения еще одного нового раздела физики – электродинамики. Понимая, что новое открытие вызовет оживленные исслефизикой его коллег, он прикидывал, кого же это заинтересует из членов академии более всего; он мог перебрать в уме десятки имен, и в некоторых он не ошибся, но держу пари, что имени Ампера не было в том списке. Да не только Араго, – никому не могло прийти в голову, что именно Ампер прославит академию и Францию.

    Приехав в Париж, Араго не мешкая стал готовиться к показу опыта Эрстеда и на ближайшем же недельном заседании математического отделения физикиии, 11 сентября, продемонстрировал отклонение магнитной стрелки электрическим током. Демонстрация произвела, как и следовало ожидать, огромное впечатление на собравшихся; ученые мужи, убедившись в простоте и доступности опыта, поспешили в свои лаборатории, дабы приобщиться уже лфизикиучастием к новому выдающемуся открытию.

    Неизвестно, скольким из них удалось воспроизвести опыт, вероятно, большинству – ничего сложного для этого не требовалось, – но зато точно известно, что четыре академика сумели пойти дальше Эрстеда. Три из них прибавили к открытию датского физика новые детали, а четвертый поднялся на новую ступень знания, с высоты которой виделись иные, незнакомые горизонты. А за горизонтом человечество ожидала электрическая машина.

    Этим четвертым ученым был Андре Мари Ампер. То, что он сумел сделать, вызывает у нас восхищение. Но то, как он сумел это сделать, – изумление. В истории науки найдется не много примеров, когда открытие новой области, включая постройку прибора, заняло бы всего семь дней. Уже на следующем заседании, состоявшемся 18 сентября, Ампер сообщил собравшимся, что, по его мнению, открытие Эрстеда, безусловно, великое, сформулировано автором, как ему, Амперу, кажется, не очень удачно, и он хотел бы надеяться, что правило, которое он сейчточь-в-точьедложит, покажется досточтимым коллегам более приемлемым. Он обозначил это правило как «правило пловцафизикаормулировал его следующим образом: «Если мыслить себя плывущим по направлению тока, то есть ток будет идти от ног к голове наблюдателя, и этот последний будет смотреть на стрелку, то всегда отклонится тот конец стрелки, который обращен к северу».

    Новое правило сразу же понравилось академикам, как потом и всем другим физикам, – оно действительно было много проще нагромождений Эрстеда.

    Далее, ободренный поддержкой коллег, Ампер высказывается о причинах электромагнетизма. Он приходит к выводу, что Земля потому действует на магнитную стрелку, что в ней самой циркулирует электрический ток, бегущий с востока на запад, а вовсе не потому, что она, как раньше предполагали, – естественный Магнит. Это сообщение было встречено заметно прохладнее – оно не вязалось с устоявшимися представлениями, а академики не любят, когда их заставляют менять свои взгляды.

    Далее, покончив с рассмотрением опыта Эрстеда, Ампер начинает докладывать о своих собственных опытах. В литературе существует небольшое расхождение по поводу даты, когда это произошло. В одних воспоминаниях говорится, что в тот же день, 18 сентября, другие авторы называют 25-е – дату следующего заседания. Возможно, не так уж важно, сколько дней понадобилось Амперу на открытие электродинамики – семь или четырнадцать, оба срока достаточно малы.

    Если принять во внимание, что Ампер не просто провозгласил существование нового явления, но и продемонстрировал его на специально сооруженном приборе, а, следовательно, еще какое-то время должно было уйти на изготовление, более вероятным кажется второй срок – двухнедельный. Но это по нашим меркам: мы и не мыслим себе, что какой-нибудь прибор, даже самый простой, можно сделать в несколько дней; в практике современных лабораторий, к сожалению, большая часть времени ученого уходит именно на ожидание, пока мастерские выполнят заказ. Поэтому не исключено, что Амперу повезло, и его прибор, состоящий из двух рамок с током – подвижной и неподвижной, – был сделан сразу же, и тогда он мог уложиться и к 18 сентября.

    К открытию взаимодействия двух токов Ампер пришел не сразу. И опять существуют две версии, каким образом это произошло.

    По одной версии, он додумался до этого чисто умозрительно: вспомнив, что электричество трения, то есть статическое электричество, действует отталкивающе или притягивающе на другой наэлектризованный предмет. И он тогда подумал: а не происходит ли такое же явление при взаимодействии движущихся токов, бегущих по проводникам? И, произведя несложный опыт, убедился, что его догадка справедлива.

    Эта версия представляется и неубедительной и крайне поверхностной. Чтобы прийти к такому выводу, нет никакой нужды в открытии Эрстеда. Идея здесь должна была зародиться в голове Ампера чисто ассоциативно. И возникнуть могла бы много раньше – взаимодействие наэлектризованных предметов Ампер преподавал в школе своим ученикам, это азы электроэнергии.

    Более вероятной кажется другая интерпретация. Выдвинув гипотезу о происхождении земного магнетизма, Ампер решил доказать ее экспериментально – получить искусственный Магнит. Он взял медную проволоку и сделал из нее спираль, так он представлял себе движение тока вокруг Земли. Позже он назвал ее соленоидом. Спираль эту подвесил за концы к батарее и стал смотреть, что произойдет, когда к торцу спирали подносил магнитную стрелку. Происходило то, что и должно было происходить согласно его теории: та сторона спирали, где ток шел по движению часовой стрелки-циферблату, если смотреть на нее прямо в лоб, притягивалась северным полюсом магнита и отталкивалась южным.

    Доказав таким образом справедливость своих представлений о земном магнетизме, Ампер делает следующий шаг к открытию. Он подносит друг к другу две спирали и видит, как они тоже начинают взаимодействовать – отталкиваться или притягиваться. По существу, в этот момент Ампер уже открыл взаимодействие двух токов, только круговых, но ему показалось это неубедительным. Вероятно, он находился в плену опыта Эрстеда – тот ведь открыл магнитное действие тока на прямом проводе. И поэтому Ампер сооружает прибор, где могут взаимодействовать в пространстве два прямолинейных проводника – подвижный и неподвижный. Присоединив к ним вольтовы столбы, он увидел то, что до него не видел еще никто: подвижный проводник стал двигаться.

    И вот перед членами Французской академии стоит 45-летний Ампер, к которому привыкли относиться чуть снисходительно из-за его странностей, и, привычно щурясь, формулирует новый закон, которому отныне и навеки суждено носить его имя: «Два электрических тока притягиваются, когда они идут параллельно в одном направлении; они отталкиваются, когда идут в противоположных направлениях».

    Академики еще не успевают прийти в себя от изумления, а Ампер добавляет: «Все явления, которые представляют взаимодействие тока и магнита, открытые Эрстедом, входят как частный случай в законы притяжения электрических токов». Это означает, что открытие Ампера значительнее, шире, чем открытие ученого датчанина, как называли Эрстеда в то время. Это означает, что их товарищ по академии, который не в состоянии даже усидеть полчаса за работой, который сам признавался им, что для него «величайшее несчастье сидеть за столом с пером в руке», что этот самоучка, не кончивший даже школы, – гениальный ученый, самый великий из всех сидящих сейчас в зале. А это надо было пережить. И далеко не все смогли подавить свое уязвленное самолюбие, смирить свою ложную гордыню, уничтожить появившиеся ростки зависти и протянуть руку товарищу – поздравляю, прими и тому подобное.

    Вместо этого Ампера стали попрекать: мол, его притяжение просто разновидность притяжения двух наэлектризованных тел, известного даже детям. Пришлось Амперу терпеливо объяснять людям, имеющим академическое звание и вроде бы обязанных хоть немного разбираться в физике, что в первом случае тела, одинаково заряженные, отталкиваются, а здесь одинаковые токи притягиваются – неужели не ясно?

    Чтобы больше не было путаницы в этом вопросе, Ампер предлагает четко разделить эти два электрических явления: в первом случае, считает он, мы имеем дело с электростатикой, во втором – с электродинамикой.

    Кстати, вот исток ошибочной версии, о которой говорилось раньше. Ампер действительно размышлял об электростатическом притяжении, но не до открытия, а после, и не по собственной инициативе, а вынужденный защищаться от дурацких нападок.

    К сожалению, они на этом не кончились. Они только изменились по тональности. Первые были просто невежественными и не очень учтивыми. Дальше же все шло на улыбках, на расшаркиваниях, на уверениях в совершеннейшем почтении, на крайнем сожалении, что новому открытию суждено, вероятно, исчезнуть, как дым. Но как быть, если у месье Ампера не сходятся концы с концами? Согласно логике, два тела, действующие на третье, должны взаимодействовать и между собой. Так? Так, отвечает Ампер, еще не подозревая подвоха. Ну, а раз так, то что же удивительного в том, что проволоки, действующие порознь на магнитную стрелку – а это есть опыт Эрстеда, – действуют и друг на друга в опыте Ампера? И тогда выходит, что не открытие Эрстеда – следствие закона самоуверенного Ампера, а, напротив, его закон логически вытекает из опыта датчанина и ничего гениального здесь нет.

    Ампер обозлился: если вы полагаете, что мой закон можно вывести из опыта Эрстеда, то попробуйте, выведите из него направление взаимодействия токов. Ну? Ну кто может?

    Не смог никто. Это ничего не значит, продолжали бубнить наиболее упрямые и злонамеренные, это не доказательство.

    Ампер, расстроенный таким враждебным приемом, не стал более ничего говорить по этому поводу; он знал, что прав, и знал, что рано или поздно это признают и его враги, а когда это произойдет – сейчас или через год, – значения для него не имеет.

    Но, к счастью, в академии были и друзья Ампера, знавшие цену его способностям и его нелюбовь вести публичные споры. И один из них, человек весьма остроумный, сказал спорщикам следующее: «Я сейчас легко докажу вам, что вы заблуждаетесь в самой посылке. Вот вам два ключа, которые я при вас вынимаю из кармана, два обычных железных ключа. Действуют они порознь на магнитную стрелку? – Он поднес их по очереди к компасу. – Действуют. Теперь я складываю эти ключи вместе. Что они, отталкиваются или притягиваются? Что же вы молчите? Докажите, что они взаимодействуют друг с другом, раз оба действуют на стрелку, – и победа за вами, моему другу придется признать, что он неправ. Не можете? Ну, тогда признайте, что неправы вы». Пришлось признать.

    Здесь рассказано лишь о некоторых треволнениях Ампера в связи с его открытием. Они, конечно, не удивят никого: новое часто встречает поначалу противодействие. Но у Ампера были заботы и поважнее. Он задумал подвести под свои эксперименты математическую базу.

    Меж тем и другие ученые занялись разработкой открытия Эрстеда, и 25 сентября, после выступления Ампера, слово взял Франсуа Араго и рассказал, что ему, так же как и его ученому товарищу, удалось обнаружить нечто новое. «Когда я соединил длинной медной проволокой два полюса вольтова столба, – сказал Араго, – и опустил потом ее в железные опилки, то она притянула их, как если бы была настоящим магнитом. Когда ток размыкался, опилки опадали. Таким образом, – с гордостью закончил Араго, – мне удалось даже намагнитить швейную иглу».

    Присутствовавший тут же Ампер заметил, что намагничивание металлических предметов можно усилить еще более, если взять провод в виде спирали, как это делал он, и вставить иглу внутрь.

    Вы понимаете, что предложил сделать ничего не подозревавший Ампер? Электромагнит! Но, поглощенный спорами из-за своего открытия, расстроенный ими, он даже не оценил того, что сказал. И, к сожалению, никто из присутствующих также не понял его замечания, даже Араго, которому уж, как говорится, и карты в руки. Причем Ампер и Араго даже поговорили о том, что, чем больше колец в спирали, тем сильнее должно быть намагничивание; оба согласились с этим и... преспокойно прошли мимо изобретения электромагнита. А эта честь досталась английскому преподавателю физики Вильяму Стерджону, который в 1825 году наконец-то догадался сделать то, что уже давно было сделано и только ждало человека, который сумел бы найти этому невезучему изобретению практическое применение. Зато когда в Лондоне был продемонстрирован первый электромагнит, поднимавший груз весом более трех килограммов и отпускавший его, как только электрическая цепь размыкалась, все ученые – даже великие – изумлялись, как дети, новому чуду. Им бы в пору изумиться, как это они почти пять лет спокойно работали с соленоидом Ампера, не понимая, что держат в руках.

    Доклад Араго о намагничивании, доклады Ампера, продолжавшиеся еще несколько недель, работы других ученых, пока молчавших или говоривших туманными намеками, держали академию в состоянии постоянного напряжения – что еще будет? Кто еще из ученых мужей, сейчас вроде бы спокойно слушающих докладчика, ошарашит на следующем заседфизикиаким-нибудь новым открытием?

    Эти ожидания не были напрасными. 30 октября член академии Жан Био, тот самый, что председательствовал в комиссии, проверявшей открытие Вольты, и профессор физики Феликс Савар доложили о том, что им удалось вывести математический закон, описывающий опыт Эрстеда. Изящным экспериментом, в котором исключалось действие на стрелку магнитного поля Земли, они доказали, что ток действует на Магнит перпендикулярно кратчайшему расстоянию между проволокой и стрелкой, а сила взаимодействия обратно пропорциональна этому расстоянию.

    Первая формула, появившаяся, наконец, среди общих слов, подводившая под качественные наблюдения количественную основу, подстегнула Ампера. В конце концов, он математик более, чем физик, и кому, как не ему, попытаться вывести формулу к собственному закону.

    Математическая разработка теории электродинамики заняла немало времени. Формулу в самом общем виде, по существу эскиз к своей конечной знаменитой формуле, Ампер сообщил на заседании академии 10 июня 1822 года. А в полном виде, в том, в котором мы пользуемся еюфизикичас, формула была опубликована в 1823 году в специальном сочинении. С тех пор, вот уже сто пятьдесят лет, она служит основой всех электротехнических расчетов. Каждый из нас, еще в школе, или в институте на экзаменах, или потом в научной или инженерной деятельности, вычислял силу взаимодействия токов по формуле Ампера. Многие физики отмечали ее огромное значение для науки, ее универсальность, проницательность ее автора, но, пожалуй, лучше других сказал знаменитый английский физик Максвелл: «Исследования Ампера, в которых он установил законы механического взаимодействия электрических токов, принадлежат к числу самых блестящих работ, которые были проведены когда-либо в науке. Теория и опыт как будто в полной силе и законченности вылились сразу из головы «Ньютона электроэнергии». Его сочинение совершенно по форме, недосягаемо по точности выражений и, в конечном счете, приводит к одной формуле, из которой можно вывести все явления, представленные электроэнергией, и которая навсегда останется основной формулой электродинамики». Много хороших слов сказано в этом отрывке открывателем электромагнитного излучения о своем французском коллеге, но самый большой комплимент, какой мог позволить себе английский физик, – назвать Ампера «Ньютоном электроэнергии».

    А великий французский ученый, прославивший свою страну больше, чем иные государственные деятели, вынужден был тратить свои последние деньги на покупку необходимого оборудования; вынужден был, забросив работы по электродинамике и сжав зубы, идти униженно просить начальство Парижского университета, чтобы ему дали какую-нибудь добавочную нагрузку, чтобы подзаработать хоть несколько сотен франков. Иногда ему давали ее, но ту, которую он ненавидел больше всего в жизни и которую хуже других мог исполнить: его отправляли инспектором в какой-нибудь далекий департамент на три-четыре месяца, чтобы он, объезжая город за городом, проверял расходы училищ – на мел, чернила, мебель, чтобы он контролировал знания учеников, устраивал им экзамены, проверял склонения, спряжения, переводы с латыни. Он мучился от своего бессилия, от необходимости тратить драгоценное время на совершенно идиотские занятия, которые по плечу любому инспектору, но что он мог сделать! Не ехать? Но его излишняя щедрость, необходимость самому оплачивать печатание своих трудов, поскольку писал он их великое множество по разным областям знаний, все это не позволяло ему отказываться от скромного побочного дохода. Но мало того, что он переносил страдания во время поездок: когда он возвращался в Париж, они не кончались, с него требовали отчеты, бумажки, циркуляры, – с него, который даже свои великие законы писал стоя, наспех, настолько он не мог творить, привязанный к одному месту. Об этой его слабости знали все – и университетское руководство, даже министр, но они умышленно заставляли его выполнять все бюрократические формальности.

    Этих чиновников ничуть не смущало, что они отнимают время и силы у одного из лучших сынов Франции; им доставляло садистское удовольствие ставить на место ученого-оригинала – пусть не воображает о себе бог знает что.

    А он не воображал. Он был чрезвычайно, до болезненности скромен. Конечно, он знал цену своим открытиям, но, к сожалению, не мог заставить других оценить их по достоинству и своевременно. А когда это, наконец, произошло, «Ньютона электроэнергии» уже не было в живых – в 1836 году он умер по дороге на юг, где надеялся поправить свое никуда не годное здоровье.

    Другому творцу электротехники, Эрстеду, повезло больше. В 1829 году датское правительство в благодарность за его заслуги перед наукой и страной назначило его директором Политехнической школы в Копенгагене, и он мог спокойно заниматься науками, не перебиваясь случайными заработками.

    Правда, он уже не сделал ничего столь же значительного, как его первое открытие, но некоторым образом помог рождению еще одного открытия. И тоже случайного.

    6.1 Открытие электромагнетизма

    6.2 История электромагнетизма

    6.3 Электромагнетизм

    Электрическое сопротивление

    Электрическое сопротивление — мера способности тел препятствовать прохождению через них электрического тока. В системе СИ единицей сопротивления является ом (Ω). Сопротивление тела (R) является постоянной величиной для данного проводника, которую можно определить как R=U/I где

    R — сопротивление

    U — разность электрических потенциалов на концах объекта, измеряется в вольтах

    I — ток, протекающий между концами объекта под действием разности потенциалов.

    Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.

    Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому.

    Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов.

    Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Данный эффект (свойство проводников) получил название сопротивление. Сопротивлением также называют деталь, оказывающую электрическое сопротивление току.

    Удельное сопротивление проводника характеризует его способность проводить ток и зависит, прежде всего, от свойств вещества, образующего проводник. Единица измерения удельного сопротивления — ом•метр (Ом•м); в технике часто применяется производная единица: Ом•ммІ/м, равная 10-6 от ом•м. Величина удельного сопротивления обозначается символом ρ (ро).

    Металл

    ρ, Ом•мЧ10-6

    Сплав

    ρ, Ом•мЧ10-6

    алюминий

    0,028

    Нихром

    1,05…1,4

    Вольфрам

    0,055

    Хромаль

    1,3…1,5

    железо

    0,098

    Манганин

    0,43…0,51

    золото

    0,024

    Константан

    0,5

    медь

    0,0172

    Никелин

    0,4

    свинец

    0,205

    серебро

    0,016

    Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

    Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

    Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

    R=p*(LS)p — удельное сопротивление проводника, L — длина проводника, а S — площадь сечения проводника (экспериментальный факт). Величина электрического сопротивления проводника измеряется в Омах.

    где

    7.1 Электрическое сопротивление

    7.2 Удельное сопротивление

    7.3 Сопротоивление электроэнергии

    Статическое электричество

    Статическое электричество — явление, при котором на поверхности и в объёме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд.

    Статическое электричество - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках. (ГОСТ 12.1.018-93 «Пожаровзрывобезопасность статического электроэнергии»)

    Электризация диэлектриков трением может возникнуть при соприкосновении двух разнородных веществ из-за различия атомных и молекулярных сил (из-за различия работы выхода электрона из материалов). При этом происходит перераспределение электронов (в жидкостях и газах ещё и ионов) с образованием на соприкасающихся поверхностях электрических слоёв с противоположными знаками электрических зарядов. Фактически атомы и молекулы одного вещества отрывают электроны от другого вещества.

    Полученная разность потенциалов соприкасающихся поверхностей зависит от ряда факторов – диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий. При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.

    Электрические разряды могут взаимно нейтрализовываться вследствие некоторой электропроводности влажного воздуха. При влажности воздуха более 85% статическое электричество практически не возникает.

    В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электроэнергии. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и землей. При достижении определенной разности потенциалов происходит разряд молнии между облаками или на земле. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.

    Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

    8.1 Ток статический

    8.2 Статика

    8.3 Статическое электричество

    8.4 Статический электроток

    8.5 Статическая электроэнергия

    Поражение электрическим током

    В 1862 году впервые был описан случай поражения электрическим током при случайном соприкосновении с токоведущими частями. Смерть наступила мгновенно. Подобные случаи смерти, вызванной электрическим током, начали регистрировать; по мере расширения использования электроэнергии число их росло. Мнение было единое – смерть наступала, как правило, мгновенно и каких либо существенных изменений на теле не обнаруживалось. Исключение составляли случаи, когда поражение сопровождалось ожогом электрической дугой.

    С конца XIX века начинаются опыты на животных для определения пороговых - опасных – значений тока и напряжения. Определение этих значений вызвалось необходимостью создания защитных мероприятий. Начиная с первых годов XIX столетия, особенно после того, как появляются сведения о крайне мучительной и не мгновенной смерти при казни на электрическом стуле, возникли противоречия, как в оценке опасных значений поражающих токов, так и в оценке механизма поражения. Не вдаваясь сейчас в существо противоречий, отметим одно: при электротравмах люди погибают иногда при небольших значениях напряжений и токов, и выживают при больших значениях напряжений и токов, достигающих нескольких киловольт и сотен миллиампер. Основоположник науки об опасности электроэнергии – австрийский учёный Еллинек, столкнувшись при расследовании поражения электрическим током с этим фактом, еще в конце 20-ых годов нашего столетия впервые высказал предположение о том, что решающую роль во многих случаях поражений играет фактор внимания, то есть по существу, тяжесть исхода поражения обуславливается в значительной степени состоянием нервной системы человека в момент поражения.

    Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействия. Тепловое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон. Химическое действие ведет к электролизу крови и других содержащихся в организме растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма. Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток и тканей организма. В результате такого возбуждения они могут погибнуть.

    Различают два основных вида поражения человека электрическим током: электрический удар и электрические травмы. Электрическим ударом называется такое действие тока на организм человека, в результате которого мышцы тела начинают судорожно сокращаться. При этом в зависимости от величины тока и времени его действия человек может находиться в сознании или без сознания, но при нормальной работе сердца и дыхания. В более тяжелых случаях потеря сознания сопровождается нарушением работы сердечно-сосудистой системы, что ведет даже к смертельному исходу. В результате электрического удара возможен паралич важнейших органов (сердца, мозга и пр.).

    Электрической травмой называют такое действие тока на организм, при котором повреждаются ткани организма: кожа, мышцы, кости, связки. Особую опасность представляют электрические травмы в виде ожогов. Такой ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Бывают также такие травмы, как металлизация кожи, различные механические повреждения, возникающие в результате резких непроизвольных движений человека. В результате тяжелых форм электрического удара человек может оказаться в состоянии клинической смерти: у него прекращается дыхание и кровообращение. При отсутствии медицинской помощи клиническая смерть (мнимая) может перейти в смерть биологическую. В ряде случаев, однако, при правильной медицинской помощи (искусственном дыхании и массаже сердца) можно добиться оживления мнимоумершего.

    Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца, остановка дыхания вследствие паралича мышц грудной клетки и так называемый электрический шок.

    Прекращение работы сердца возможно в результате непосредственного действия электрического тока на сердечную мышцу или рефлекторно из-за паралича нервной системы. При этом может наблюдаться полная остановка работы сердца или так называемая фибрилляция, при которой волокна сердечной мышцы приходят в состояние быстрых хаотических сокращений. Остановка дыхания (вследствие паралича мышц грудной клетки) может быть результатом или непосредственного прохождения электрического тока через область грудной клетки, или вызвана рефлекторно вследствие паралича нервной системы. Электрический шок представляет собой нервную реакцию организма на возбуждение электрическим током, которая проявляется в нарушении нормального дыхания, кровообращения и обмена веществ. При длительном шоковом состоянии может наступить смерть.

    Если оказана необходимая врачебная помощь, то шоковое состояние может быть снято без дальнейших последствий для человека. Основным фактором, определяющим величину сопротивления тела человека, является кожа, ее роговой верхний слой, в котором нет кровеносных сосудов. Этот слой обладает очень большим удельным сопротивлением, и его можно рассматривать как диэлектрик. Внутренние слои кожи, имеющие кровеносные сосуды, железы и нервные окончания, обладают сравнительно небольшим удельным сопротивлением. Внутреннее сопротивление тела человека является величиной переменной, зависящей от состояния кожи (толщины, влажности) и окружающей среды (влажности, температуры и т. д.). При повреждении рогового слоя кожи (ссадина, царапина и пр.) резко снижается величина электрического сопротивления тела человека и, следовательно, увеличивается проходящий через тело ток. При повышении напряжения, приложенного к телу человека, возможен пробой рогового слоя, отчего сопротивление тела резко понижается, а величина поражающего тока возрастает.

    Из вышесказанного становится понятно, что на тяжесть поражения человека электрическим током влияет много факторов. Наиболее неблагоприятный исход поражения будет в случаях, когда прикосновение к токоведущим частям произошло влажными руками в сыром или жарком помещении.

    Поражение человека электрическим током в результате электрического удара может быть различным по тяжести, т. к. на степень поражения влияет ряд факторов: величина тока, продолжительность его прохождения через тело, частота, путь, проходимый током в теле человека, а также индивидуальные свойства пострадавшего (состояние здоровья, возраст и др.). Основным фактором, влияющим на исход поражения, является величина тока, которая, согласно закону Ома, зависит от величины приложенного напряжения и сопротивления тела человека. Большую роль играет величина напряжения, т. к. при напряжениях около 100 В и выше наступает пробой верхнего рогового слоя кожи, вследствие чего и электрическое сопротивление человека резко уменьшается, а ток возрастает.

    Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты при величине тока 1—1,5 мА и постоянного тока 5—7 мА. Эти токи называются пороговыми ощутимыми токами. Они не представляют серьезной опасности, и при таком токе человек может самостоятельно освободиться от воздействия. При переменных токах 5—10 мА раздражающее действие тока становится более сильным, появляется боль в мышцах, сопровождаемая судорожным их сокращением. При токах 10—15 мА боль становится трудно переносимой, а судороги мышц рук или ног становятся такими сильными, что человек не в состоянии самостоятельно освободиться от действия тока. Переменные токи 10—15 мА и выше и постоянные токи 50—80 мА и выше называются неотпускающими токами, а наименьшая их величина 10—15 мА при напряжении промышленной частоты 50 Гц и 50—80 мА при постоянном напряжении источника называется пороговым неотпускающим током.

    Переменный ток промышленной частоты величиной 25 мА и выше воздействует не только на мышцы рук и ног, но также и на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть. Ток 50 мА при частоте 50 Гц вызывает быстрое нарушение работы органов дыхания, а ток около 100 мА и более при 50 Гц и 300 мА при постоянном напряжении за короткое время (1—2 с) поражает мышцу сердца и вызывает его фибрилляцию. Эти токи называются фибрилляционными. При фибрилляции сердца прекращается его работа как насоса по перекачиванию крови. Поэтому вследствие недостатка в организме кислорода происходит остановка дыхания, т. е. наступает клиническая (мнимая) смерть. Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. Чем больше время протекания тока через тело человека, тем тяжелее его результаты и больше вероятность летального исхода.

    Большое значение в исходе поражения имеет путь тока. Поражение будет более тяжелым, если на пути тока оказывается сердце, грудная клетка, головной и спинной мозг. Путь тока имеет еще то значение, что при различных случаях прикосновения будет различной величина сопротивления тела человека, а следовательно, и величина протекающего через него тока. Наиболее опасными путями прохождения тока через человека являются: «рука — ноги», «рука — рука». Менее опасным считается путь тока «нога — нога». Как показывает статистика, наибольшее число несчастных случаев происходит вследствие случайного прикосновения или приближения к голым, незащищенным частям электроустановок, находящихся под напряжением. Для защиты от поражения током голые провода, шины и другие токоведущие части либо располагают в недоступных местах, либо защищают ограждениями. В некоторых случаях для защиты от прикосновения применяют крышки, короба и т. п.

    Поражение током может возникнуть при прикосновении к нетоковедущим частям электроустановки, которые оказываются под напряжением при пробое изоляции. В этом случае потенциал нетоковедущей части оказывается равным потенциалу той точки электрической цепи, в которой произошло нарушение изоляции. Опасность поражения усугубляется тем, что прикосновение к нетоковедущим частям в условиях эксплуатации является нормальной рабочей операцией, поэтому поражение всегда является неожиданным. В отношении поражения людей электрическим током в «Правилах устройства электроустановок» различают:

    Помещения с повышенной опасностью, которые характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

    - сырости или проводящей пыли;

    - токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.);

    - высокой температуры;

    -возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.

    Особо опасные помещения, которые характеризуются наличием одного из следующих условий, создающих особую опасность:

    -особой сырости;

    -химически активной среды;

    -одновременного наличия двух или более условий повышенной опасности.

    Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную опасность и особую опасность.

    В качестве защитных мер при прикосновении к нетоковедущим частям применяют защитное заземление, зануление или отключение, двойную изоляцию, пониженное напряжение, защитные средства и др.

    Защитным заземлением называют металлическое соединение с землей нетоковедущих металлических частей электрической установки (корпуса электрических машин, трансформаторов, реостатов, светильников, аппаратов, каркасы щитов, металлические оболочки кабелей, фермы, колонны и др.). Защитное заземление применяют в сетях с изолированной нейтральной точкой. В четырех проводных сетях напряжением до 1000 В с заземленной нейтралью применяют защитное зануление — присоединение нетоковедущих металлических частей к многократно заземленному нейтральному проводу. В случае пробоя изоляции создается режим короткого замыкания (аварийный режим), и электроустановка отключается аппаратами защиты. Зануление не требуется для установок малой мощности в жилых, офисных, торговых отапливаемых помещениях с сухими плохо проводящими полами.

    Защитное отключение — автоматическое отключение электроустановки системой защиты при возникновении опасности поражения человека электрическим током. Так как в случае повреждения электроустановки изменяются значения некоторых величин (напряжение корпуса относительно земли, ток замыкания на землю и др.), то если эти изменения окажутся воспринимаемыми чувствительными датчиками, аппараты защиты сработают и отключат электроустановку.

    Под двойной понимается дополнительная, кроме основной, изоляция, которая ограждает человека от металлических нетоковедущих частей, могущих случайно оказаться под напряжением. Наиболее надежную двойную изоляцию обеспечивают корпусы из изолирующего материала. Обычно они несут на себе всю механическую часть. Этот способ защиты чаще всего применяют в электрооборудовании небольшой мощности (электрифицированный ручной инструмент, бытовые приборы и ручные электрические лампы).

    В помещениях с повышенной опасностью и особо опасных, даже при одновременном контакте человека, с токоведущими частями разных фаз или полюсов, применяют пониженное напряжение (12 и 36 В). Источником такого напряжения являются батареи гальванических элементов, аккумуляторы, выпрямительные установки, преобразователи частоты и трансформаторы (применение автотрансформаторов в качестве источника пониженного напряжения запрещено). Так как мощность этих источников незначительна, область применения пониженных напряжений ограничивается ручным инструментом, ручными и станочными лампами местного освещения.

    Важным фактором обеспечения безопасности является знание устройства и правил эксплуатации электроустановок, поддержание в исправном состоянии электрооборудования, исправность сигнализации и блокировок, наличие средств пожаротушения.

    Если несмотря на все принятые меры все же происходит поражение человека электрическим током, то спасение пострадавшего в большинстве случаев зависит от быстроты освобождения его от действия тока, а также от быстроты и правильности оказания пострадавшему первой помощи.

    Может оказаться, что пострадавший сам не в состоянии освободиться от действия электрического тока. В этом случае ему немедленно нужно оказать помощь, приняв меры предосторожности, чтобы самому не оказаться в положении пострадавшего. Необходимо отключить установку ближайшим выключателем или прервать цепь тока, перерезав провод ножом, кусачками, топором и др. Если пострадавший лежит на земле или на проводящем ток полу, следует изолировать его от земли, подсунув под него деревянную доску или фанеру.

    После освобождения пострадавшего от действия электрического тока ему немедленно нужно оказать доврачебную помощь в соответствии с его состоянием. Если пострадавший не потерял сознания и может самостоятельно передвигаться, отвести его в помещение, удобное для отдыха, успокоить, дать выпить воды, предложить полежать. Если при этом у пострадавшего оказались какие-либо травмы (ушибы, порезы, вывихи суставов, переломы костей и т. п.), то оказать на месте соответствующую помощь, а при необходимости направить в медицинский пункт или вызвать врача.

    Если после освобождения от электрического тока пострадавший находится в бессознательном состоянии, но дышит нормально и прослушивается пульс, надо немедленно вызвать врача, а до его прибытия оказывать помощь на месте — привести пострадавшего в сознание: дать понюхать нашатырный спирт, обеспечить поступление свежего воздуха. Если после освобождения от действия электрического тока пострадавший находится в тяжелом состоянии, т. е. не дышит или дышит тяжело, прерывисто, то, вызвав врача, необходимо, не теряя ни минуты, приступить к искусственному дыханию. Перед началом искусственного дыхания необходимо:

    - не теряя ни секунды, освободить пострадавшего от стесняющей одежды — расстегнуть ворот, развязать шарф, снять пояс и т. д.;

    - раскрыть рот пострадавшего, если он судорожно сжат;

    - быстро освободить рот пострадавшего от посторонних предметов, вынуть зубные протезы.

    После этого можно начинать выполнение искусственного дыхания методом «рот в рот». Техника вдувания воздуха заключается в следующем. Пострадавший лежит на спине, под лопатками — валик из одежды. Голову его запрокидывают назад, для чего подкладывают одну руку под шею, а другой рукой надавливают на темя. Этим обеспечивается отхождение корня языка от задней стенки гортани и восстановление проходимости дыхательных путей. При таком положении головы обычно рот раскрывается. Если во рту есть слизь, то ее вытирают платком или краем рубашки, натянутым на указательный палец, проверяют, нет ли во рту посторонних предметов (зубных протезов, мундштука и т. д.), которые надо удалить. После этого приступают к вдуванию воздуха. Оказывающий помощь делает глубокий вдох, плотно (можно через марлю или платок) прижимает свой рот ко рту пострадавшего и с силой вдувает воздух.

    Во время вдувания воздуха следует пальцами закрыть нос у пострадавшего, чтобы полностью обеспечить поступление всего вдуваемого воздуха в легкие. При невозможности полного охвата рта у пострадавшего следует вдувать воздух в нос (при этом надо у него закрывать рот). Вдувание воздуха производят каждые 5—6 с, что соответствует частоте дыхания 10—12 раз в минуту. После каждого вдувания освобождают рот и нос пострадавшего для свободного выхода воздуха из легких.

    При отсутствии пульса следует продолжать искусственное дыхание и одновременно приступить к проведению наружного массажа сердца. Наружный массаж сердца поддерживает кровообращение как при остановившемся, так и при фибриллирующем сердце. Общеизвестно, что такой массаж может привести к возобновлению самостоятельной нормальной деятельности сердца. Оказывающий помощь накладывает на нижнюю часть грудины пострадавшего обе руки друг на друга ладонями вниз. Ритмично 60—80 раз в минуту надавливают на нижнюю часть грудины вертикально вниз. Грудная клетка во время клинической смерти человека из-за потери мышечного тонуса становится очень подвижной, что позволяет при массаже смещать нижний конец грудины на 3—4 см. Сердце, таким образом, сдавливается и из него выдавливается кровь в кровеносные сосуды. После каждого надавливания следует отнимать руки от грудины для того, чтобы грудная клетка полностью расправилась, а сердце наполнилось кровью. Лучше всего проводить оживление пострадавшего вдвоем, поочередно выполняя наружный массаж сердца и искусственное дыхание.

    9.1 Поражение электрическим током

    9.2 Поражение током

    9.3 Поражение электричеством

    9.4 Последствия поражения током

    9.5 Удар током

    Гальванический элемент

    Рождение электротехники начинается с изготовления первых гальванических элементов – химических источников электрического тока. Связывают его с именем Александра Вольты. Однако рассказывают, что, раскапывая египетские древности, археологи обратили внимание на странные сосуды из обожённой глины с изъеденными металлическими пластинами в них. Что это?.. Многое в окаменевших остатках ушедших, канувших в Лету цивилизаций, до сих опор не понятно людям. Нелегко восстановить образ минувшего, тем более что часто он оказывается не таким уж примитивным, как думается. “А уж не банки ли это химических элементов?” – пришла кому-то в голову сумасшедшая мысль. Впрочем, так ли она безумна? Ведь получение постоянного электрического тока химическим путём действительно очень просто. Солёной воды на Земле хоть отбавляй, как и необходимых металлов – цинка и купрума. Вместо купрума лучше применять серебро и золото… Первые элементы имели один общий недостаток. Они давали ток лишь первые несколько минут, затем требовали отдыха. Почему это происходило, ни кто не понимал. Но с такими быстро утомляющимися элементами нечего было, и думать затевать какую-то промышленность. И поэтому все усилия исследователей сконцентрировались на проблеме утомляемости.

    Оказалось, что цинк, соединяясь с кислотой, вытесняет из нее водород. Пузырьки газа оседают на металлических пластинках и затрудняют прохождение тока. Физики назвали это явление поляризацией и объявили ему войну.

    Примерно в начале 30-х годов прошлого столетия англичане Кемп и Стерджен выяснили, что цинковая пластина, покрытая амальгамой – действует слабее чем пластина из чистого цинка, но при этом не растворяется в кислоте, когда элемент не работает, то есть когда он не даёт тока. Это стало существенным достижением. Следом за ним французский учёный, учредитель учёной династии Беккерель высказал мысль, что хорошо бы попробовать опускать пластины в разные сосуды так, чтобы выделяющийся водород тут же химически соединялся с кислородом, образуя воду. Идея понравилась, но как её реализовать? Изобретатели всех стран принялись за опыты.

    На первом этапе наибольший успех выпал на долю профессора химии Лондонского королевского колледжа Даниеля. В стеклянную банку с медным купоросом он поместил согнутый в цилиндр металлический лист. Внутрь вставил глиняный сосуд с пористыми стенками, заполненный разбавленной серной кислотой. В кислоту был помещён цинк. Водород проходил через поры глиняного сосуда, вытеснял медь из купороса. Несколько синих кристалликов, брошенных на дно банки, пополняли убылФизики… Поляризация была побеждена! Однако у элемента Даниеля нашлись другие недостатки. Так, он имел электродвижущую силу. Часть электрической энергии тратилось внутри самого элемента на разложение медного купороса.

    Соотечественник Даниеля Вильям Грове решил заменить медный купорос азотной кислотой. А чтобы она не разъела медный электрод, заменил медь платиной. Всё получилось в соответствии с ожиданиями: электродвижущая сила возросла. К сожалению, возросла и стоимость такого источника тока: платина дорогой металл. Правда, Грове и его водородватели делали электроды из тончайших листков, согнутых для прочности буквой S. Не смотря на высокую стоимость, элементы Грове нашли широкое применение в лабораториях многих стран мира.

    Может показаться странным, что никто не додумался заменить платину древесным углём. Принципиальная возможность такой замены была уже известна. Но надо учитывать тот уровень техники, ни кто не умел делать плотных углей. А обычный древесный уголь был кислоту пористым. Прошло нВодородо лет, прежде чем немецкий химик Роберт Бунзен описал способ получения угольных стержней из прессованного молотого графита, который выделяли при сгорании светильного газа на раскалённых стенках реторт. Стержни стали прекрасным заменителем платины.

    Элемент Бунзена приняли “на ура” не только лаборатории физики, но и первые электротехнические предприятия по гальванопластике. И это, не смотря на то, что элемент при работе выделял немало удушливых паров азотной кислоты. Правда, Иоаган Поггендорф заменил азотную кислоту на хромовую, но это себя не оправдывало т.к. производство хромовой кислоты очень сложный и дорогостоящий проект. Изобретатели старались вовсю. На страницах журналов появлялись всё новые и новые конструкции химических элементов. Их изобретали все: любители, научные мужи… Впрочем, во второй половине XIX столетия источники тока стали изготовлять в специальных мастерских. Мастерские эти работали в основном на телеграф. Основными требованиями, которого были: простота устройства, его дешевизна, устойчивость и надёжность в работе. За всё это телеграфисты соглашались на самые слабые токи.

    Можно рассказать ещё о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырёх угольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря, соединяясь с цинком, давал хлористый цинк. Аммоний распадалкислотуастворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята эткислотывосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается с элемента. Больше ток больше выделяется водорода. Водород же поляризует элемент, и последний быстро устаёт. Правда после некоторого отдыха он исправно работает снова. Однако лучше всего его было использовать при малых силах тока в телеграфии или в системе сигнализации, где между моментами работы существуют довольно большие промежутки.

    Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно это мешало компаниям пассажирских перевозок, которые строили корабли с системой сигнализации не чем не уступавшей многим лучшим отелям. Но в море корабли подвергались качке… И чтобы не расплескать жидкость из банок, их стали заполнять опилками, а потом заливать варом. Под такой крышкой в результате работы батареи начинали скапливаться газы, которые в последствии разрывали банку. Не скоро люди научились делать сухие элементы, которые стали в наше время такими обычными. Но любой из них является много раз усовершаммиакванным и упрощенным элементом Лекланше.

    Великим достижением прошлого века, связаводород исследованием работы тех же элементов, явилось открытие возможности параллельного и последовательного их соединения, когда в первом случае удавалосьВодородть от них суммарное напряжение, а во втором – суммарный ток…

    10.1 Гальванический элемент

    10.2 История гальванического элемента

    10.3 Химический источник электрического тока

    10.4 Гальвани бтарейки

    Вторичные элементы (Аккумуляторы)

    Грове в 1932 году изобретает газовый элемент, который получает название вторичного элемента, поскольку давал ток лишь после его зарядки от какого-нибудь постороннего источника. Однако из-за неудобства пользования газовый элемент Грове распространения не получил.

    Примерно в 1859-1860 годах в лаборатории Александра Беккереля- второго представителя славной династии французских физиков – работал в качестве ассистента некто по имени Гастон Плантэ. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надёжными источниками тока для телеграфии, Сначала он заменил платиновые электроды газового элемента Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум одинаковым свинцовым листам. Он их проложил суконкой и намотал всё это на деревянную палочку, чтобы вошло в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время вторичный элемент зарядился, и сам оказался способен давать ощутимый ток постоянной силы. При этом если его не разряжали сразу, заряд электроэнергии сохранялся в нем длительное время.

    Собственно, это и было рождением аккумулятора – накопителя электрической энергии. Первые аккумуляторы Гастона Плантэ имели очень незначительную электрическую ёмкость – они запасали совсем немного электроэнергии. Но изобретатель заметил, что если заряженный первоначально прибор разрядить, а затем пропустить через него ток в обратном направлении и повторить этот процесс не один раз, то емкость аккумулятора увеличится. При этом возрастал слой окисла на электродах. Этот процесс получил название формовки пластин и занимал сначала около трёх месяцев.

    Как и у всех гальванических элементов, ток аккумулятора тем больше, чем больше площадь его электродов. Эту истину хорошо усвоил Камилл Фор. Он был самоучкой – без специального образования – с юных лет безраздельно увлекался техникой. Вынужденный зарабатывать деньги на жизнь. Фор сменил множество специальностей. Был чертёжником, техником, рабочим, химиком на английском пороховом заводе, работал у Планте. Разносторонние практические знания сослужили ему добрую службу. После Парижской выставки 1878 года в голову Камилла Фора запала идея нового способа формовки пластин. Он попробовал заранее покрывать их свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскалялся. При этом слой окисла приобретал пористое строение, а значит, и увеличивалась площадь взаимодействия с кислотой. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Плантэ. Другими словами, их энергоёмкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом… В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось значительно больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки энергии вырабатываемой машинами.

    Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии получения пластин.

    Существует еще один вид аккумуляторов – железоникелевый щелочной, который разработал Эдисон. В нем отрицательный электрод выполнен из пористого железа или кадмия с большой рабочей поверхностью. Положительный электрод – никелевый, окружен окисью трёхвалентного никеля. В качестве электролита используют 21% раствор едкого натра. Корпус чаще всего изготавливается из стали. Коэффициент полезного действия у щелочного аккумулятора меньше, чем у свинцового. Но зато щелочной аккумулятор лучше переносит перегрузки, не чувствителен к избыточному заряду и сильному разряду, прочен, легко переносит перегрев и не нуждается в ремонте. А поскольку из щелочных аккумуляторов не выделяются газы их можно делать герметичными.

    11.1 Вторичные элементы

    11.2 Вторичные элементы (Аккумуляторы)

    11.3 Аккумулятор

    11.4 Аккумуляторы KCSM60

    11.5 Элемент Грове

    Русский свет

    Создание экономичного генератора электрического тока оживило усилия изобретателей, искавших области применения электрического тока помимо телеграфа. Уже первые исследователи гальванизма заметили, что проволока, по которой идёт электрический ток, нагревается, накаливается и может даже раскалиться до яркого свечения и расплавиться. Кроме того, в 1802 году В. В. Петров указал на возможность освещения тёмных покоев с помощью электрической дуги. Он же исследовал электроразрядное свечение в разряженном пространстве под колпаком. Те же явления позже были изучены Дави и Фарадеем… Освещение! Сейчас трудно представить себе, что всего полтораста лет тому назад оно являло собой проблему общественной жизни. С начала XIX века в дома горожан проникает газовое освещение, пришедшее на смену свечам и лампам с жидким горючим. Сначала газовый свет казался великолепным. О лучшем, нечего было и мечтать. Однако триумф газа был недолгим. Уже к середине века газовое освещение перестало удовлетворять людей из-за своих многочисленных недостатков. Оно было тусклым, небезопасным в пожарном отношении, вредным для здоровья.

    На фабриках и на заводах, где трудовой день был 14-16 часов, отсутствие яркого света сказывалось на росте производительности и тормозило технический прогресс. Все это способствовало усилению работы изобретателей над новыми видами электрического освещения: над дуговыми лампами, лампами накаливания и газоразрядными лампами.

    Раньше других появились в разработке дуговые лампы, хотя первое время их прогресс сдерживался отсутствием надёжных источников тока, не было и хороших углей. Древесные угли, которыми пользовались Дэви Петров, быстро сгорали и были не прочны. Выход нашёл Роберт Бунзен – известный химик, изобретатель цинко-угольного элемента. Он предложил использовать твёрдый нагар, остающийся на раскалённых стенках газовых реторт. Из отбитых кусков этого нагара удавалось выпилить небольшие твёрдые стержни, которые хорошо проводили ток и сгорали значительно медленнее. Позже этот нагар стали молоть и из порошка формовали стержни требуемого размера и необходимой однородности.

    Вторая трудность, её называли проблемой регулятора, заключалась в том, что угли сгорали – и расстояние между ними увеличивалось. Дуга становилась неспокойной, свет из белого становился голубым, начинал мигать и гас. Нужно было придумать механизм, поддерживающий между концами угля одинаковое расстояние.

    Изобретатели предложили много устройств. Большинство из них имело тот недостаток, что невозможно было включить несколько ламп в одну цепь. Поэтому каждый источник первое время работал на один светильник.

    Но вот в 1856 году в Москве изобретатель А. И. Шпаковский создал осветительную установку с одиннадцатью дуговыми лампами, снабженными оригинальными регуляторами. Правда, и они не решали проблему дробления света.

    Первым разрешил её изобретатель В. Н. Чиколев, применивший в 1869 году в дуговой лампе дифференциальный регулятор. Этот принцип используется до сих пор в больших прожекторных установках.

    Примерно к тому же времени относятся удачные опыты по применению ламп накаливания и даже первых газосветных трубок. Но самую важную и решающую роль в переходе от опытов по электричеству к электрическому освещению сыграли работы русского электротехника П. П. Яблочкова… В 1875 Яблочков вместе с изобретателем. Глуховым организовал в Петербурге мастерскую физических приборов. Компаньоны с увлечением конструировали электротехнические новинки, ставили опыты, обсуждали грандиозные проекты… К сожалению, оба оказались плохими предпринимателями, и финансовые дела их предприятия шли из рук вон плохо.

    Однажды, получив заказ на изготовление установки для электролиза поваренной соли, Яблочков занялся поиском наивыгоднейшего положения электродов в растворе. Случилось так, что он коснулся концом одного электрода конца другого. Вспыхнула дуга. Они не переставали гореть, пока не сгорели. Павел Николаевич, мысли которого были заняты обдумыванием устройства дуговой лампы, сразу же понял, что перед ним простое и безусловное решение проблемы… Финансовый крах оторвал его от занятий. В октябре того же года Яблочков уезжает в Париж, где поступает на работу в электротехнические мастерские. Здесь он доводит своё изобретение до конца и получает за него патент. Два параллельно поставленных угольных стержня с прокладкой из каолина присоединялись к клеммам гальванической батарейки или машине постоянного тока. Наверху стояла угольная перемычка – запал, который быстро сгорал при включении. Немало пришлось поэкспериментировать Павлу Николаевичу. Угли сгорали не равномерно. Положительный электрод уменьшался быстрее, приходилось его делать толще… Простота конструкции и безотказность в работе электрической свечи Яблочкова привели к тому, что успех изобретения превзошёл самые смелые ожидания. Технические журналы и мировая пресса пророчили наступление новой эпохи… В 1876 году русский изобретатель представил свою удивительную свечу на Лондонской выставке. И там она стала гвоздём программы. А год спустя предприимчивый француз Денейруз добился учреждения акционерного общества (АО) “Общество изучения электрического освещения по методам Яблочкова”. Благодаря стараниям этого француза, лампы Яблочкова появились в самых посещаемых местах Парижа, на улице – Авеню де ль’Опера и на площади Оперы, а также в магазине “Лувр” тусклое газовое и жидкостное освещение заменили матовые шары, которые светились белым, мягким светом.

    Это было так прекрасно, что из Парижа русский свет шагнул не только в другие города, но пересёк границы. Ещё большую популярность он получил после удачного эксперимента Яблочкова, в котором он попробовал применять не постоянный, а переменный ток (теперь угли сгорали равномерно).

    12.1 Русские генераторы

    12.2 Генератор

    12.3 Генератор схема

    12.4 Лампа

    12.5 Освещение

    12.6 Русский свет

    Лампа накаливания

    Единственное изобретение, которое можно противопоставить дуговой лампе Яблочкова носит название дуговой лампы. Её демонстрация произошла тёмным осенним вечером 1873 года, толпы петербуржцев спешили на Пески (ныне – район Советских улиц). “Там их ожидало чудесное зрелище. В двух уличных фонарях керосиновые лампы были заменены какими-то стеклянными пузырями, от которых шли провода в толстой резиновой оболочке к световой машине. Рядом суетились люди. Прилично одетый господин в длинном расстёгнутом пальто что-то прикручивал, соединял. Провода лежали прямо на панели и путались под ногами. Но вот застучала машина, зачихала, завертела якорь генератора, и пузырьки на столбах вспыхнули ярким светом. Люди вынимали припасённые газеты, сравнивали, на каком расстоянии от старого керосинового фонаря и нового можно было различить буквы. Разница была впечатляющей. Люди подходили и поздравляли господина в пальто” Господин Лодыгин, это великолепно! Господин Лодыгин, это изумительно!”.

    Лампа накаливания была не первым его проектом, ещё в 1870 году он пытается предложить Франции своё детище электролёт. Но, к сожалению, его проект, на который тогдашнее правительство Франции ассигнует 50 тысяч франков, был свёрнут по причине революции. А патент на применение электроэнергии в воздушной навигации получили братья Гастон и Альфред Тиссандье – воздухоплаватели.

    От него осталась незначительная деталь. Для освещения своего летательного аппарата Лодыгин предлагал лампочку накаливания. Вернувшись в Россию, он получает привилегию на неё и, имея уже некоторый опыт, патентует изобретение в ряде европейских государств.

    В 70 годы того же века с лампочкой Лодыгина случилась одна любопытная история… В то время на одной из Северо-Американских верфей строили корабли для Российской Федерации, и когда настало время их принимать, туда поехал лейтенант русского флота А. Н. Хотинский. Он взял с собой несколько ламп накаливания Лодыгина. Может, чтобы освещать помещения корабля. А почему бы и нет? изобретение уже тогда было запатентовано во Франции, Российской Федерации, Бельгии, Австрии и Великобритании… Случилось так, что он показал русские лампы изобретателю по имени Томас Эдисон, которому новинка чрезвычайно понравилась. Американец принялся за усовершенствование русского изобретения.

    Сейчас трудно установить насколько описанное обстоятельство повлияло на изобретение Эдисона. Но именно он первым предложил выкачивать из ламп накаливания воздух. Но Лодыгин тоже не остановился на достигнутом и ставит всё новые и новые опыты, в результате которых он предложил использовать вместо угля вольфрам и другие металлы, тогда как у Эдисона роль спирали исполняло бамбуковое волокно.

    13.1 Декоративные лампы накаливания

    13.2 Дуговая лампа

    13.4 Лампы накаливания

    13.5 Лампочка Лодыгина

    13.6 Декор лампа

    13.7 Лампочка

    Гром и молния

    Грозы обычно бывают летом в жаркую погоду; когда с поверхности земли горячие потоки воздуха насыщенные влагой, поднимаются вверх. Пока капли воды и кристаллы льда кру­жатся в воздушных потоках грозовых облаков, они заряжаются электроэнергией. Крошечные, положительно заряженные кристаллы льда движутся вверх, а отрицательно заряженные градинки собираются внизу облака.

    Точно так же, как из-за электростатичес­кой индукции к заряженной леске притяги­ваются маленькие предметы, по той же при­чине и заряженное облако притягивается к земле. Отрицательный заряд на нижней сто­роне облака притягивается положительным зарядом на земле, и между ними возникает мощная искра (молния). Разряд молнии на­гревает воздух и заставляет его расширяться, что сопровождается грохотом грома. Звук переносится по воздуху гораздо медленнее, чем свет, поэтому вначале мы видим вспыш­ку, а потом слышим гром.

    При трении металлы не только легко эле­ктризуются, но и очень хорошо проводят электричество. Поэтому если металлический предмет находится в руках человека, то заряд проходит и через тело человека. Электриче­ство, возникающее при трении, чаще встре­чается у материалов, являющихся плохими проводниками, таких как стекло, резина, пластмасса, смола, Эти материалы называют­ся изоляторами. Так как электричество по ним не передается, его называют статичес­ким электроэнергией. Фарадей называл его также «обыкновенным» электроэнергией, од­нако в наши дни мы повсеместно используем электрический (движущийся) ток. Так что теперь скорее он стал «обыкновенным».

    14.1Гром и молния

    14.2 Гроза и молния

    14.3 НЕбо с грозой

    14.4 Мощная искра

    14.5 Смерч с грозой

    14.6 Гром с грозой

    14.7 Гроза

    14.8 Шировая молния

    14.9 Молния

    Настоящий удар током

    Хотя описанные выше удары электричес­ким током и неприятны, они, тем не менее безопасны для человека. Но электрические заряды, возникающие в результате трения, в ряде случаев могут вызвать чрезвычайные ситуации. Были случаи, когда огромные су­пертанкеры взрывались в то время, когда их топливные цистерны промывались мощны­ми водометами. Электрический заряд возникает при тре­нии капель воды в струе водомета. Этот эф­фект сходен с эффектом от восходящего в грозовое облако воздушного потока с капель­ками воды. В подобных условиях, несмотря на влажную среду; могут вспыхнуть искры, что грозит возгоранием паров бензина, ос­тавшихся в цистерне.

    Самолеты тоже могут получить электричес­кий заряд, если попадут в грозовое облако или при трении шасси о землю вовремя посадки. Раньше искры от скопившихся на по­верхности самолёта электрических зарядов создавали угрозу взрыва. Однако теперь предпринимаются необходимые меры пре­досторожности. Например, покрышки шасси делают из электропроводящего материала. На концах крыльев самолета монтируются коронирующие (разрядные) электроды, и все электричество скапливается на концах крыльев и «распыляется».

    Меры безопасности необходимы и при заправке топливом, потому что трение, воз­никающее в потоке бензина, вполне может вызвать сильный заряд. Поэтому бензонасо­сы делаются из железа.

    Движущиеся заряды

    При вспышке молнии образуется огромное количество энергии. Затем следует пауза, по­ка снова не накопится такой же сильный за­ряд и не вспыхнет новая молния. Представьте теперь, что можно накапливать и разряжать заряды без пауз. Получится постоянный по­ток зарядов, Таков, собственно, эффект бата­рейки - хотя при ее работе количество энер­гии несравнимо с молнией. На этом же прин­ципе построена работа генераторов на элек­тростанциях.

    Если заряды движутся, их поток называ­ют электрическим током. Для производства электрического тока необходим приток энергии. Обычно энергию получают в ре­зультате химических реакций (как в бата­рейках) или движения (генераторы). Кроме того, энергию можно получать непосредст­венно от солнечного света или теплового излучения. Это делается с помощью солнеч­ных батарей, которые снабжают электро­энергией спутники и другое космическое оборудование.

    15.1 Движущиеся заряды

    Животное электричество

    У животных и человека все процессы жизне­деятельности регулирует мозг, который полу­чает и отсылает сигналы (нервные импульсы) по нервам. И для этого тоже требуется опре­деленный заряд, хотя и очень небольшой. Однако некоторые животные накапливают такое количество электроэнергии, которое способно парализовать или даже убить свою добычу. Например, электрический угорь ге­нерирует разряд в 600 вольт, и этого вполне достаточно, чтобы убить рыбу или очень сильно ударить током человека,

    Ко второй половине восемнадцатого века изучение электрических явлений уже дало материал для вывода о важной роли электроэнергии в биологии. Опыты Джона Уолша и Ларошеля доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этого животного. Исследования Уолша и Гунтера были опубликованы в 1773 году.

    Таким образом, ко времени начала опытов Гальвани в 1786 году не было недостатка в попытках физической трактовки психических и физиологических явлений. Почва для возникновения учения о животном электричестве была вполне подготовлена.

    Вся жизнь Гальвани (1737—1798) прошла в итальянском городе Болонье. Жизнь его была небогата событиями. Любопытно, что университет он закончил по специальности богословие и только после защиты диссертации заинтересовался медициной. Это произошло под влиянием общения его с тестем — известным врачом и профессором медицины Карло Галеацци.

    Несмотря на ученую степень, Гальвани круто изменил свою профессию и вновь окончил Болонский университет, но уже медицинское отделение. Магистерская работа Гальвани была посвящена строению человеческих костей. После ее успешной защиты Гальвани начал преподавать медицину. В 1785 году, после смерти Галеацци, Гальвани занял его место руководителя кафедры анатомии и гинекологии.

    Работая в университете, Гальвани одновременно занимался физиологией: ему принадлежат интересные труды, в которых он доказал, что строение птичьего уха практически не отличается от человеческого.

    Открытие, как это часто бывает, произошло случайно. В своем трактате Гальвани пишет: «Я разрезал и препарировал лягушку... и, имея в виду совершенно другое, поместил ее на стол, на котором находилась электрическая машина... Один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки... Другой заметил, что это удается тогда, когда из кондуктора машины извлекается искра. Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями».

    Как справедливо указал впоследствии Вольта, в самом факте вздрагивания лапки препарированной лягушки при электрическом разряде с физической точки зрения не было ничего нового. Явление электрической индукции, а именно явление так называемого возвратного удара, было разобрано Магоном в 1779 году. Однако Гальвани подошел к факту не как физик, а как физиолог. Ученого заинтересовала способность мертвого препарата проявлять жизненные сокращения под влиянием электроэнергии.

    Он с величайшим терпением и искусством исследовал эту способность, изучая ее локализацию в препарате, условия возбудимости, действие различных форм электроэнергии и в частности атмосферного электроэнергии. Классические опыты Гальвани сделали его отцом электрофизиологии, значение которой в наше время трудно переоценить.

    Вместе с тем Гальвани пришел к замечательному открытию. Напрасно ожидая сокращения мышц в ясную погоду, он, «утомленный... тщетным ожиданием... начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке»... «Хотя я, — пишет он далее, — нередко наблюдал сокращения, но ни одно не соответствовало перемене в состоянии атмосферы и электроэнергии... Когда же я перенес животное в закрытую комнату, поместил на железной пластине и стал прижимать к ней проведенный через спинной мозг крючок, то появились такие же сокращения, такие же движения».

    Таким образом, Гальвани, осуществив ряд экспериментов, приходит к выводу о существовании нового источника и нового вида электроэнергии. Его привели к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов и лягушечного препарата.

    Особенно эффектен и эффективен оказался следующий опыт: «Если держать висящую лягушку пальцами за одну лапку так, чтобы крючок, проходящий через спинной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла бы касаться той же пластинки, то как только эта лапка касается указанной пластинки, мышцы начинают немедленно... сокращаться. При этом лапка встает и поднимается и затем, вновь упав на пластинку, вместе с тем приходит в соприкосновение с последней, снова по той же причине, поднимается вверх, и, таким образом, продолжает далее попеременно подниматься и падать, так что эта лапка, к немалому восхищению и радости наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником».

    В такой довольно непростой форме был открыт новый источник электроэнергии, создающий в проводящей замкнутой цепи длительный разряд. По объективным причинам физиолог Гальвани не мог допустить и мысли, что причина явления кроется в контакте разнородных металлов. Ученый предположил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передается по нервам.

    Теория животного электроэнергии подводила базу под практическую электромедицину, и открытие Гальвани произвело сенсацию. Среди последователей болонского анатома оказался и Вольта.

    Алессандро Вольта (1745—1827) родился в итальянском городе Комо. Уже с 18 лет Алессандро ведет переписку с Нолле по вопросам физики. Еще через год он пишет латинскую поэму о современных физико-химических открытиях. Первая работа 1764 года посвящена лейденской банке, следующая работа 1771 года — «Эмпирические исследования способов возбуждения электроэнергии и улучшение конструкции машины». В 1774 году Вольта становится преподавателем физики в родном городе. В 1777 году он изобретает электрофор, затем конденсатор и электрофор с конденсатором. Но и это не все. На его «счету» изобретение электрического пистолета, водородной лампы, эвдиометра.

    В 1777 году Вольта назначается профессором физики в Павий. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба он получил награду от Наполеона и был избран членом Института.

    В первых своих статьях, напечатанных в начале девяностых, Вольта разделяет точку зрения Гальвани. Но вскоре намечается будущий отход от этой теории, на первый план выдвигаются физические моменты эффекта. Сначала Вольта устанавливает, что соответствующим образом «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр».

    Потом ученый определяет важность контакта разнородных металлов. «Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения...» (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

    В дальнейшем Вфизикиокончательно порывает с теорией животного электроэнергии. Он дает физическую трактовку эффекта. В письме к Кавалло Вольта пишет: «..я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переходфизикирического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся все время, пока сохраняется сообщение между обеими обкладками, имеет место независимо от того, наложена ли эта обкладка на живое или мертвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, на воду или на смоченные ею тела» А раньше 10 февраля 1794 года в письме к тому же Кавалло Вольта прямо начинает вопросом: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убежден, что все действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде».

    Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения «тем сильнее, чем дальше отстоят друг от друга примененные два металла в том ряду, в каком они поставлены нами здесь; цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит. Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, «являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики тока, но настоящие двигатели электроэнергии...» В одном из примечаний к этой статье Вольта вновь подчеркивает, что к идее о контактном напряжении он пришел уже более трех лет тому назад и уже в 1793 году дал свой ряд металлов.

    Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников «вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою».

    «Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами — серебром и железом, свинцом и латунью, серебром и цинком и т. д. — ввести один или более проводников, именно из того класса, который назван классом влажных проводников, так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие и сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате такого соприкосновения».

    Так ясно и четко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причем, по крайней мере, один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса.

    Гальванисты в ответ приводили опыты, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника. На это Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса.

    «...Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса...»

    В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену в 1795 году и Альдини в 1798 году.

    20 марта 1800 года Вольта написал свое знаменитое письмо Бенксу с описанием своего столба — изобретения, произведшего подлинную революцию в науке об электричестве.

    П.С. Кудрявцев пишет в своей книге: «Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта — основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашел опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди еще предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в ее существовании уже сомнений не оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться».

    16.1 Животное электричество

    16.2 Опыт Гальвани

    16.3 Лаборатория Гальвани

    16.4 Электрический кот

    Напряжение и ток

    Приведенное ниже описание поможет вам лучше понять, что такое ток и электрическое напряжение.

    Итак, есть две емкости, соединенные труб­кой, и в одну емкость наливается вода. Вода наливается до тех пор, пока ее уровень не станет одинаковым в обеих емкостях. Если одну емкость приподнять над другой, то вода из одной емкости будет перетекать в другую, пока уровни опять не станут одинаковыми.

    Чем больше разница в уровнях воды в двух емкостях, тем быстрее будет литься вода. Скорость, с какой переливается вода, анало­гична скорости движения тока. С такой ско­ростью свободные электроны передвигаются в металлической проволоке. Разница в уровне воды сравнима с элект­рическим напряжением. Чем выше напряжение, тем сильнее поток электрического тока.

    У батареек в фонариках и в портативных радиоприемниках напряжение колеблется от 1,5 до 9 вольт. Точная величина зависит от со­става и количества элементов в батарейке. В бытовой электросети напряжение составляет от 100 до 240 вольт, в зависимости от место­нахождения.

    17.1 Напряжение

    17.2 Напряжение и ток

    Белое пятно в электричестве

    В конце прошлого века учёные (Стюарт, 1878 год) пришли к выводу, что в и атмосфере Земли на высоте примерно шестидесяти километров начинается ионизированная область – ионосфера, проводящий слой атмосферы, который как скорлупой охватывает планету. Это позволяет грубо и приближенно рассматривать земную поверхность и ионосферный слой как обкладки конденсатора с разностью потенциалов около трёхсот тысяч вольт. В районе ясной погоды этот природный конденсатор постоянно разряжается, поскольку ионы под действием сил электрического поля уходят к Земле. А вот в районах грозовой деятельности картина иная. Считается, что в один момент времени гроза охватывает примерно 1% земной поверхности. В этих районах мощные токи текут снизу вверх, компенсируя разряд в ясных районах.

    Таким образом, грозовые облака – это не что иное, как природные электрические генераторы, поддерживающие в равновесии всю систему сложного электрического хозяйства во всем земном масштабе.

    Казалось бы, люди, занявшиеся изучением электрических сил, в первую очередь должны были бы обратить внимание на атмосферное электричество. Ведь оно, как ни какое другое, ближе и всегда под руками. Однако на деле было не так. Долгое время исследователи и не предполагали, что крошечная искорка и молния явления одной природы и лишь разные по своему масштабу. Вернее сказать, подозрения, конечно, были. Порою, они даже высказывались в слух. Но это были лишь подозрения. Глубокое заблуждение древних философов, убеждённых в том, что мир Земля не имеет ничего общего с миром Неба, были стойкими и держались долго. Лишь в XVIII веке наступило время объединить наблюдаемые явления и уверенно заявить о том, что небесное и земное электричество – явления одной природы. И только XX столетие объяснило механизм образования грозы. Правда, пока объяснило тоже не до конца…

    Применение электроэнергии в медицине и биологии

    С течением времени областей применения электроэнергии становится всё больше. Становится популярным применение электроэнергии и в химии, начало которому положил Фарадей.

    Перемещение вещества – движение зарядоносителей – нашло одно из первых своих применений в медицине для ввода соответствующих лекарственных соединений в тело человека. Суть метода состоит в следующем: нужными лекарственными соединениями пропитывается марля или любая другая ткань, которая служит прокладкой между электродами и телом человека; она располагается на участке тела подлежащему лечению. Электроды подключаются к источнику постоянного тока. Метод подобного ввода лекарственных соединений впервые применён во второй половине XIX века, широко распространён и сейчас. Он носит название электрофореза или ионофореза.

    Последовало ещё одно, имеющее огромную важность для практической медицины открытие в области электортехники. 22 Августа 1879 года английский ученый Крукс сообщил о своих исследованиях катодных лучей, о которых в то время стало известно следующее:

    При пропускании тока высокого напряжения через трубку с очень сильно разряженным газом из катода вырывается поток частичек, несущихся с огромной скоростью.

    Эти частички движутся строго прямолинейно.

    Эта лучистая энергия может производить механическое действие. Например, вращать маленькую вертушку, поставленную на её пути.

    Лучистая энергия отклоняется магнитом.

    В местах, на которое падает лучистая материя, развивается тепло. Если катоду придать форму вогнутого зеркала, то в фокусе этого зеркала могут быть расплавлены даже такие тугоплавкие материалы, как, например, сплав иридия и платины.

    Катодные лучи – поток материальных телец меньше атома, а именно частиц отрицательного электроэнергии.

    Таковы первые шаги в преддверии нового крупнейшего открытия, сделанного Вильгельмом Конрадом Рентгеном.

    Рентген обнаружил принципиально иной источник освещения, названный Х-лучами. Позже эти лучи получили название рентгеновских. Сообщение Рентгена вызвало сенсацию. Во всех странах мира множество лабораторий начали воспроизводить установку Рентгена, повторять и развивать его исследования. Особый интерес вызвало это открытие у врачей. Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами и их пациентами, подозревавшими, что в них находятся когда-то проглоченные иголки, пуговицы и т.д. История медицины до этого не знала столь быстрой реализации открытий в области электроэнергии, как это случилось с новым диагностическим средством – рентгеновскими лучами.

    Заинтересовались рентгеновскими лучами и в Российской Федерации. Еще не было официальных научных публикаций, отзывов на них, точных данных об аппаратуре, лишь появилось краткое сообщение о докладе Рентгена, а под Петербургом, в Кронштадте, изобретатель радио Александр Степанович Попов уже приступает к созданию первого отечественного рентгеновского аппарата. Об этом факте мало известно. О роли А. С. Попова в разработке первых отечественных рентгеновских аппаратов, их внедрении, пожалуй, впервые стало известно из книги Ф. Вейткова.

    Новые достижения электротехники соответственно расширили возможности исследования “живого” электроэнергии. Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышц возникает электрический потенциал. Разрезав мышцу поперёк волокон, он соединил её с одним из полюсов гальванометра, а продольную поверхность мышцы соединил с другим полюсом и получил потенциал в пределах 10-80 мВ. Значение потенциала обусловлено видом мышц. По утверждению Маттеучи, биоток течёт от продольной поверхности к поперечному разрезу, и поперечный разрез является электроотрицательным. Этот любопытный факт был подтверждён опытами над различными животными – черепахами, кроликами и птицами, проводимыми рядом исследователей, из которых следует выделить немецких физиологов Дюбуа-Реймона, Германа и нашего соотечественника В. Ю. Чаговца. Пельтье в 1834 году опубликовал работу, в которой излагались результаты исследования взаимодействия биопотенциалов с протекающим по живой ткани постоянным током. Оказалось, что полярность биопотенциалов при этом меняется. Изменяется и амплитуда.

    Одновременно наблюдалось и изменение физиологических функций.

    В лабораториях физиологов, биологов, медиков появляются электроизмерительные приборы, обладающие достаточной чувствительностью и соответствующими пределами.

    Источники

    А. Томилин “Рассказы об электричестве”. Москва “Детская литература” 1987 год

    В. Е. Манойлов “электричество и человек” Ленинград ЭНЕРГОИЗДАТ Ленинградское отделение 1982 год. (Издание второе)

    “Энциклопедический словарь юного физика” Москва “ПЕДАГОГИКА” 1991 год.

    “Детская энциклопедия” том 5 (второе издание) издательство “ПРОСВЕЩЕНИЕ” Москва 1965 год

    “Энциклопедический словарь юного техника” Москва “ПЕДАГОГИКА” 1987 год.

    knowlg.com

    innovatory.narod.ru

    dic.academic.ru

    knowlg.com/

    wikipedia.org

    mukhin.ru

    bibliotekar.ru

    Источник: http://forexaw.com/

    Энциклопедия инвестора. 2013.

    Игры ⚽ Поможем решить контрольную работу
    Синонимы:

    Полезное


    Смотреть что такое "Электричество" в других словарях:

    • ЭЛЕКТРИЧЕСТВО — (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… …   Словарь иностранных слов русского языка

    • ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) …   Толковый словарь Ушакова

    • ЭЛЕКТРИЧЕСТВО — совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …   Большой Энциклопедический словарь

    • ЭЛЕКТРИЧЕСТВО — (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… …   Большой Энциклопедический словарь

    • ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между… …   Научно-технический энциклопедический словарь

    • электричество — лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 • актиноэлектричество …   Словарь синонимов

    • ЭЛЕКТРИЧЕСТВО — в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон …   Большая медицинская энциклопедия

    • электричество — (1) [IEV number 151 11 01] EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 – Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 – In… …   Справочник технического переводчика

    • ЭЛЕКТРИЧЕСТВО — ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

    • Электричество — – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… …   Энциклопедия терминов, определений и пояснений строительных материалов

    • ЭЛЕКТРИЧЕСТВО — совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики …   Большая политехническая энциклопедия


    Поделиться ссылкой на выделенное

    Прямая ссылка:
    Нажмите правой клавишей мыши и выберите «Копировать ссылку»