- Энергоносители
(Energy)
Понятие энергоносителей, виды энергоносителей
Понятие энергоносителей, виды энергоносителей, альтернативные энергоносители
Содержание
Содержание
Природний газ
Уголь
Торф
Ядерное томливо
Водород против черного золота
Альтернативные энергоносители
- Топливные брикеты
- Газ на дне океана
Энергоносители - это общее название всех видов топлива: черного золота, газа, угля, торфа, дров, ядерного топлива (урановых руд) и др.
Природний газ
Приро́дный газ — смесь газов, образовавшаяся в недрах земли при анаэробном разложении органических веществ.
Основную часть Природного газа составляет метан (CH4) — до 98 %. В состав Природного газа могут также входить более тяжёлые углеводороды — гомологи метана:
этан (C2H6),
пропан (C3H8),
C4H10 (C4H10),
а также другие неуглеводородные вещества:
Водород (H2),
сероводород (H2S),
диоксид углерода (СО2),
азот (N2),
гелий (Не).
Чистый Природный газ не имеет цвета и запаха. Чтобы можно было определить утечку по запаху, в газ добавляют небольшое количество веществ, имеющих сильный неприятный запах (т. н. одорантов). Чаще всего в качестве одоранта применяется этилмеркаптан.
Физические свойства. Ориентировочные физические характеристики (зависят от состава; при нормальных условиях, если не указано другое):
Плотность:
от 0,7 до 1,0 кг/мі (сухой газообразный);
400 кг/мі (жидкий).
Температура самовозгорания: 650 °C;
Взрывоопасные концентрации смеси газа с воздухом от 5 % до 15 % объёмных;
Удельная теплота сгорания: 28—46 МДж/мі (6,7—11,0 Мкал/мі)[1];
Октановое число при использовании в двигателях внутреннего сгорания: 120—130
Для облегчения транспортировки и хранения Природного газа его сжижают, охлаждая при повышенном давлен
Природный газ относится к полезным ископаемым. Часто является попутным газом при добыче нефти. Природный газ в пластовых условиях (условиях залегания в земных недрах) находится в газообразном состоянии — в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворённом состоянии в черного золота или воде. В стандартных условиях (101,325 кПа и 20 °С) Природный газ находится только в газообразном состоянии.
Синтез Природного газа. Существуют множество способов получения Природного газа из других органических веществ, например отходов сельскохозяйственной деятельности, деревообрабатывающей и пищевой промышленности и т. д.
Также Природный газ может находиться в виде естественных газогидратов.
Месторождения Природного газа. В осадочной оболочке земной коры сосредоточены огромные залежи Природного газа. Согласно теории биогенного (органического) происхождения черного золота, они образуются в результате разложения останков живых организмов. Считается, что Природный газ образуется в осадочной оболочке при бо́льших температурах и давлениях, чем нефть. С этим согласуется тот факт, что месторождения газа часто расположены глубже, чем месторождения черного золота.
Огромными газовыми запасами обладает Россия (Уренгойское месторождение), США, Канада. Из других европейских стран стоит отметить Норвегию, но её запасы невелики. Среди бывших республик Союза Советских Социалистических Республик (CCCP) большими запасами природного газа владеет Туркмения, а также Казахстан (Карачаганакское месторождение)
Во второй половине XX века в университете им. И. М. Губкина были открыты природные газогидраты (или гидраты метана). Позже выяснилось, что газовые запасы в данном состоянии огромны. Они располагаются как под землёй, так и на незначительном углублении под морским дном.
Метан и некоторые другие углеводороды широко распространены в космосе. Метан — третий по распространённости газ вселенной, после водорода и гелия. В виде метводородальда он участвует в строении многих удалённых от солнца планет и астероидов, однако такие скопления, как правило, не относят к залежам Природного газа, и они до сих пор не нашли практического применения. Значительное количество углеводородов присутствует в мантии Земли, однако они тоже не представляют интереса.
Природный газ широко применяется в качестве горючего в жилых частных и многоквартирных домах для отопления, подогрева воды и приготовления пищи; как топливо для машин, котельных, ТЭЦ и др. Сейчас он используется в химической промышленности как исходное сырьё для получения различных органических веществ, например пластмасс. В XIX веке Природный газ использовался в первых светофорах и для освещения (применялись газовые лампы).
Нефть
Нефть (греч. ναφθα, или через тур. neft, от персидск. нефт; восходит к аккадск. напатум — вспыхивать, воспламеняться) — горючая маслянистая жидкость, являющаяся смесью углеводородов, красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть, имеет специфический запах, распространена в осадочной оболочке Земли; на сегодня — одно из важнейших для человечества полезных ископаемых.
Нефть обнаруживается вместе с газообразными углеводородами на глубинах от десятков метров до 5—6 км. Однако на глубинах свыше 4,5—5 км преобладают газовые и газоконденсатные залежи с незначительным количеством лёгких фракций. Максимальное число залежей черного золота располагается на глубине 1—3 км. На малых глубинах и при естественных выходах на земную поверхность нефть преобразуется в густую мальту, полутвёрдый асфальт и др. образования — например, битуминозные пески и битумы.
По химической природе и происхождению нефть близка к естественным горючим газам, озокериту, а также асфальту. Иногда все эти горючие ископаемые объединяют под общим названием петролитов и относят к ещё более обширной группе так называемых каустобиолитов — горючих минералов биогенного происхождения, которые включают также ископаемые твёрдые топлива — торф, бурые и каменные угли, антрацит, сланцы. По способности растворяться в органических жидкостях (сероуглероде, хлороформе, спиртобензольной смеси) нефть, как и другие петролиты, а также вещества, извлекаемые этими растворителями из торфа, ископаемых углей или продуктов их переработки, принято относить к группе битумов.
Сырая нефть непосредственно почти не применяется. Для получения из неё технически ценных продуктов, главным образом моторных топлив, растворителей, сырья для химической промышленности, её подвергают переработке. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля её в общем потреблении энергоресурсов составляет 48 %. В перспективе эта доля будет уменьшаться вследствие возрастания применения атомной и иных видов энергии, а также увеличения стоимости и уменьшения добычи.
Очистка черного золота. Первый завод по очистке черного золота был построен в Российской Федерации в 1745 г., в период правления Елизаветы Петровны, на Ухтинском нефтяном промысле. В Петербурге и в Москве тогда пользовались свечами, а в малых городах — лучинами. Но уже тогда во многих церквях горели неугасаемые лампады. В них наливалось гарное масло, которое было не чем иным, как смесью очищенной черного золота с растительным маслом. Купец Набатов был единственным поставщиком очищенной черного золота для соборов и монастпоставщикомце XVIII столетия была изобретена лампа. С появлением ламп возрос спрос на керосин. Очистка черного золота — удаление из нефтепродуктов нежелательных компонентов, отрицательно влияющих на эксплуатационные свойства топлив и масел. Химическая очистка производится путем воздействия различных реагентов на удаляемые компоненты очищаемых продуктов. Наиболее простым способом является очистка 92-96 % серной кислотой или олеумом, применяемая для удаления нкислотойных и ароматических углеводородов. Физико-химическая очистка производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого товара. Неполярные растворители (пропан и бутан) используются для удаления из остатков нефтепереработки (гудронов), ароматических углеводородов (процесс деасфальтации). Полярные растворители (фенол и др.) применяются для удаления полициклических ароматических углеродов с короткими боковыми цепями, сернистых и азотистых соединений из масляных дистиллятов. При адсорбционной очистке из нефтепродуктов удаляются непредельные углеводороды, смолы, кислоты и др. Адсорбционную очистку осуществляюткислотынтактировании нагретого воздуха с адсорбентами или фильтрацией товара через зерна адсорбента. Каталитическая очистка — гидрогенизация в мягких условиях, применяемая для удаления сернистых и азотистых соединений.
В связи с быстрым развитием в мире химической и нефтехимической промышленности, потребность в черного золота увеличивается не только с целью повышения выработки топлив и масел, но и как источника ценного сырья для производства синтетических каучуков и волокон, пластмасс, ПАВ, моющих средств, пластификаторов, присадок, красителей и др. (более 8 % от объёма мировой добычи). Среди получаемых из черного золота исходных веществ для этих производств наибольшее применение нашли: парафиновые углеводороды — метан, этан, пропан, бутаны, пентаны, гексаны, а также высокомолекулярные (10—20 атомов углерода в молекуле); нафтеновые; ароматические углеводороды — бензол, толуол, ксилолы, этилбензол; олефиновые и диолефиновые — этилен, пропилен, бутадиен; ацетилен. Нефть уникальна именно комбинацией качеств: высокая плотность энергии (на тридцать процентов выше, чем у самых качественных углей), нефть легко транспортировать (по сравнению с газом или углём, например), наконец, из черного золота легко получить массу вышеупомянутых продуктов. Истощение ресурсов черного золота, рост цен на неё и др. причины вызвали интенсивный поиск заменителей жидких топлив.
Мазут
Мазу́т (возможно, от арабского мазхулат — отбросы), жидкий товар темно-коричневого цвета, остаток после выделения из черного золота или продуктов ее вторичной переработки бензиновых, керосиновых и газойлевых фракций, выкипающих до 350—360°С. Мазут это смесь углеводородов (с молекулярной массой от 400 до 1000 г/моль), нефтяных смол (с молекулярной массой 500—3000 и более г/моль), асфальтенов, карбенов, карбоидов и органических соединений, содержащих металлы (V, Ni, Fe, Mg, Na, Ca). Физико-химические свойства мазута зависят от химического состава исходной черного золота и степени отгона дистиллятных фракций и характеризуются следующими данными: вязкость 8—80 ммІ/с (при 100 °C), плотность 0,89—1 г/смі (при 20 °C), температура застывания 10—40°С, содержание серы 0,5—3,5 %, золы до 0,3 %, низшая теплота сгорания 39,4—40,7 МДж/моль.
Мазуты применяются в качестве топлива для паровых котлов, котельных установок и промышленных печей, для производства флотского мазута, тяжелого моторного топлива для крейцкопфных дизелей. Выход мазута составляет около 50 % по массе в расчете на исходную нефть. В связи с необходимостью углубления ее дальнейшей переработки мазут во все большем масштабе подвергают дальнейшей переработке, отгоняя под вакуумом дистилляты выкипающие в пределах 350—420, 350—460, 350—500 и 420—500°С. Вакуумные дистилляты применяют как сырье для получения моторных топлив, в процессах каталитического крекинга, гидрокрекинга, и дистиллятных смазочных масел. Остаток вакуумной перегонки мазута используют для переработки на установках термического крекинга и коксования, в производстве остаточных смазочных масел и гудрона, затем перерабатываемого на битум.
Основные потребители мазута — промышленность и жилищно-коммунальное хозяйство.
Уголь
У́голь — вид ископаемого топлива, образовавшийся из частей древних растений под землей без доступа кислорода. Уголь был первым из используемых человеком видов ископаемого топлива. Он позволил совершить промышленную революцию, которая в свою очередь способствовала развитию угольной промышленности, обеспечив её более современной технологией. В 1960 году уголь давал около половины мирового производства энергии, к 1970 году его доля упала до одной трети.
Уголь, подобно черного золота и газу, представляет собой органическое вещество, подвергшееся медленному разложению под действием биологических и геологических процессов. Основа образования угля — растительные остатки.
Антрацит — самый древний из ископаемых углей, уголь наиболее высокой степени углефикации.
Характеризуется большой плотностью и блеском. Содержит 95 % углерода. Применяется как твердое высококалорийное топливо (теплотворность 6800-8350 ккал/кг).
Каменный уголь — осадочная порода, представляющая собой товар глубокого разложения остатков растений (древовидных папоротников, хвощей и плаунов, а также первых голосеменных растений). Большинство залежей каменного угля было образовано в палеозое, преимущественно в каменноугольном периоде, примерно 300—350 миллионов лет тому назад.
По химическому составу каменный уголь представляет смесь высокомолекулярных полициклических ароматических соединений с высокой массовой долей углерода, а также воды и летучих веществ с небольшими количествами минеральных примесей, при сжигании угля образующих золу. Ископаемые угли отличаются друг от друга соотношением слагающих их компонентов, что определяет их теплоту сгорания. Ряд органических соединений, входящие в состав каменного угля, обладает канцерогенными свойствами. Содержание углерода в каменном угле, в зависимости от его сорта, составляет от 75% до 95%.
Бурый уголь — твердый ископаемый уголь, образовавшийся из торфа, содержит 65—70 % углерода, имеет бурый цвет, наиболее молодой из ископаемых углей. Используется как местное топливо, а также как химическое сырье.
Образование угля. Для образования угля необходимо обильное накопление растительной массы. В древних торфяных болотах, начиная с девонского периода, накапливалось органическое вещество, из которого без доступа кислорода формировались ископаемые угли. Большинство промышленных месторождений ископаемого угля относится к этому периоду, хотя существуют и более молодые месторождения. Возраст самых древних углей оценивается примерно в 350 миллионов лет.
Уголь образуется в условиях, когда гниющий растительный материал накапливается быстрее, чем происходит его бактериальное разложение. Идеальная обстановка для этого создаётся в болотах, где стоячая вода, обеднённая кислородом, препятствует жизнедеятельности бактерий и тем самым предохраняет растительную массу от полного разрушения. На определённой стадии процесса выделяемые в ходе его кислоты предотвращают дальнейшую деятельность бактерий. Так возникает торф — исходный товар для образования угля. Если затем происходит его захоронение под другими наносами, то торф испытывает сжатие и, теряя воду и газы, преобразуется в уголь.
Под давлением наслоений осадков толщиной в 1 километр из 20-метрового слоя торфа получается пласт бурого угля толщиной 4 метра. Если глубина погребения растительного материала достигает 3 километров, то такой же слой торфа превратится в пласт каменного угля толщиной 2 метра. На большей глубине, порядка 6 километров, и при более высокой температуре 20-метровый слой торфа становится пластом антрацита толщиной в 1,5 метра.
В результатах движения земной коры угольные пласты испытывали поднятие и складкообразование. С течением времени приподнятые части разрушались за счёт эрозии или самовозгорания, а опущенные сохранялись в широких неглубоких бассейнах, где уголь находится на уровне не менее 900 метров от земной поверхности.
Способы добычи угля зависят от глубины его залегания. Разработка ведется открытым способом в угольных разрезах, если глубина залегания угольного пласта не превышает 100 метров. Нередки и такие случаи, когда при все большем углублении угольного карьера далее выгодно вести разработку угольного месторождения подземным способом. Для извлечения угля с больших глубин используются шахты. Самые глубокие шахты на территории России добывают уголь с уровня чуть более 1200 метров.
В угленосных отложениях наряду с углем содержатся многие виды георесурсов, обладающих потребительской значимостью. К ним относятся вмещающие породы как сырье для стройиндустрии, подземные воды, метан угольных пластов, редкие и рассеянные элементы, в том числе ценные металлы и их соединения. Например, некоторые угли обогащены германием.
Торф
Торф (нем. Torf) — горючее полезное ископаемое; образовано скоплением остатков растений, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).
Содержит 50—60 % углерода. Теплота сгорания (максимальная) 24 МДж/кг. Используется комплексно как топливо, удобрение, теплоизоляционный материал и др.
По разным оценкам в мире от 250 до 500 млрд т. торфа (в пересчете на 40 % влажность), он покрывает около 3 % площади суши. При этом в северном полушарии торфа больше чем в южном, заторфованность растёт при движении к северу и при этом возрастает доля верховых торфяников (см. раздел Классификация). Так, в Республики Германии торфа занимают 4,8 %, в Швеции 14 %, в Финляндии 30,6 %. В Российской Федерации, лидирующей по запасам торфа, доля занятых им земель достигает 31,8 % в Томской области (Васюганские болота) и 12,5 % в Вологодской. Также большие запасы торфа имеются в Индонезии, Канаде, Ирландии, Англии, ряде штатов США.
Классификация. Торф подразделяется на виды по группировке растений и условиям образования, а также на типы:
Верхово́й торф — образован олиготрофной растительностью (сосна, пушица, сфагнум) при переувлажнении, вызванном преимущественно атмосферными осадками. Плохое удобрение, поскольку беден. Содержит зольные элементы 1—5 %, органических веществ — 99—95 %, pH=2.8—3.6. Химический состав: азотистых веществ — 0.9—1.2 %, P2O5 — 0.03—0.2, K2O — 0.05—0.1, CaO — 0.1—0.7, Fe2O3 — 0.03—0.5 %[1]. Окраска изменяется с повышением степени разложения от светло-желтой до темно-коричневой. Используется как топливо или теплоизоляция.
Низи́нный торф — образован эутрофной растительностью (ольха, осока, зелёный мох) при переувлажнении грунтовыми водами. Зольность 6-18 процентов. Преобладают серые оттенки, переходящие в землисто-серый цвет. Хорошее удобрение.
Также выделяется торф переходного типа. Переувлажнение грунтовыми водами, бедными минеральными солями. Зольность 4—6 процентов.
Торфяная земля. Из верхового, реже из низинного разложившегося торфа заготавливается торфяная земля и торфяной перегной используемый в садоводстве и декоративном цветоводстве.
До употребления в качестве элемента почвенных смесей для комнатных и оранжерейных дернины торфа складывают в низкие и широкие кучи на 3 года для выветривания. Поскольку в свежевыкопанных торфяных дернинах имеются вредные для большинства растений вещества и кислоты. Для ускорения выветривания и вымывания кислот производят регулярное перелопачивание. Почвенные смеси на основе торфа характеризуются значительной влагоемкостью. В кислотс песком применяется для посевов мелких семян и в качестве основного компонента при приготовлении земляных смесей для многих растений защищенного грунта
Применение торфа. Торф с древних времен привлекал внимание человека. Упоминания о торфе как «возгораемой земле», которой западноевропейцы пользовались для нагревания еды, случаются еще в трудах римского историка Плиния Старшего (I ст. н. э.). В странах Западной Европы добыча и использование торфа широко развивались в XII—XVIII столетиях. В Российской Федерации торфяное топливо впервые по достоинству оценил Петр I, который в 1696 году отдал приказ добывать торф в Воронеже и искать его в окрестностях Азова, «как в местах бездровних».
Постепенно торф стали использовать в качестве торфяного кокса, а также при выработке осветительного газа. Начало индекса пром производства торфяного полукокса и смолы пришлось на конец XIX — начало ХХ столетия.
В СССР годы индустриализации и Великой Отечественной войны как энергоноситель торф играл решающее значение на заводах Урала и Сибири. Так, на Уралмашзаводе в Свердловске существовала газогенераторная станция, на которой методом пиролиза из торфа получали горючий газ. Этот газ использовался во всех технологических процессах при производстве вооружений, включая газосварку и плавильное производство. Непосредственно после Великой отечественной войны пятилетними планами промышленного развития СССР предусматривалось интенсивное развитие торфяной топливной промышленности. Позже, с открытием и освоением Западно-Сибирской нефтегазовой провинции, роль торфа в энергетике СССР постепенно снижается.
Последним крупным проектом энергетического применения торфа было строительство и эксплуатация энергоблока Ново-Свердловской ТЭЦ на торфе с сжиганием 5 млн тонн торфа в год. В начале 80-х годов от использования торфа отказались в силу экологических причин и энергоблок перевели на Природный газ.
Сегодня торф используют в сельском хозяйстве и животноводстве, медицине, биохимии и энергетике. Развитие современных производственных технологий позволяет получать очень плодородные грунты для выращивания пищевых растений, удобрения, стимуляторы роста растений, изоляционные и упаковочные материалы, активный уголь, графит и тому подобное.
Мировым лидером по добыче торфа является Финляндия. Кроме того, широко распространена добыча торфа в Беларуси, Ирландии, Швеции, Канаде, Латвии, Российской Федерации. Около 70 % мирового объема производимого торфа используется в сельском хозяйстве, а около 30 % (35-45 млн.тонн) идет на топливо.
Ядерное топливо
Я́дерное то́пливо — вещество, которое используется в ядерных реакторах для осуществления цепной ядерной реакции деления.
Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечетным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с четным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным допливом
Природный уран состоит из трех изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо приготовляют на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 10 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.
Классификация. Ядерное топливо делится на два вида:
1. Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
2. Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.
По химическому составу, ядерное топливо может быть:
Металлическим, включая сплавы;
Оксидным (например, UO2);
Карбидным (например, PuC1-x)
Нитридным
Смешанным (PuO2 + UO2)
Применение. Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах) в виде таблеток размером в несколько сантиметров.
К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.
Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500°С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.
Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.
Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.
Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.
К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — двуокись урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 т/м3. У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·103 кВт/м2, при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.
Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется ещё токсичностью плутония. Для приготовления ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.
Высокими теплопровтоксичностьюеханическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.
Водород против черного золота
США являются крупнейшим приобретателем черного золота в мире и ее крупнейшим импортером. По данным Американского института черного золота, 43% нефтепродуктов используетсВодородестве топлива для автомобилей. Поэтому упор делается на поиск вещества, способного заменить традиционный бензин. Американский институт черного золота также прогнозирует, что 95% доступных источников черного золота в мире будут исчерпаны в ближайшие 56 лет, оставшиеся 5% иссякнут через 88 лет. Таким образом, человечеству дано максимум 30...50 лет, чтобы найти замену традиционной черного золота.
Ричард Кэммак, автор исследования «Водород как топливо», считает, что водород потенциально может стать идеальным топливом. В частности потому, что в природе существует подобный механизм – известны бактерии, использующие водород в качестводородственного источника энергии. Водорводородко распространен на Земле, его достаточно просто добывать (из воды водород добывается с помощью реакции электролиза), хранить и перевозить. Из водороводородо произвести в три раза больше энергии, чем иВодородгичного количества бензина. Водород очень взрывоопасен, но, по данным NaводородHydrogen Association, вероятность взрыва водорода не выше вероятности взрыва бензина. За последние три десятилетия на исследования в этой области государственные Водородые компании США затратили более 15 млрд дhydrogenan>
По данным Центводородалогий и политики в области национальной безопасности США, первые исследования по использованию водорода были начаты в 1944 году, и их курировало Министерство обороны США, которое было заинтересовано в создании водородного топлива для ракет. В 1950-е годы предпринимались попытки построить реактивные самолетыводородародных двигателях. В 1970-е годы, после того как в мире разразился беспрецедентный нефтяной кризис, аналогичные исследования стал проводить военно-морской флот США. Все эти эксперименты закончились неудачей.
Подобные исследования ныне активно проводят автомобилестроительные организации. Honda Motor, General Motors, Ford Motor, Mazda, Toyota, DaimlerChrysler начали выпуск экспериментальных автомобилей, работающих на водородных двигателях (в США их называют «автомобили на топливных элементах» – fuel-cells cars). Топливные элементы, изобретенные более полутора веков назад, это электрохимические устройства, которые получают электроэнергию за счет реакций взаимодействия водорода и кислорода. Единственным выбросом, образующимся в результате работы подобных двигателей, является вода. В последние годы стоимость топливных элементов значительно снизилась. По оценкам Rocky Mountain Institute, в 19водорода когда был создан первый современный топливный элемент, его исходная стоимость составляла несколько тысяч долларов на киловатт. Ныне она упала до 500...800 долл., а если будет начато массовое производство подобных устройств, то цена упадет до 50...100 долл. за киловатт.
Власти США создали также ряд программ, поощряющих американцев пересаживаться на «экологические» автомобили – к примеру, федеральные власти и власти некоторых штатов предоставляют им значительные налоговые льготы. Подобные усилия предпринимаются и на уровне отдельных штатов. Калифорния, в которой традиционно самые высокие цены на бензин в США, планирует в течение ближайших нескольких лет создать «водородные автомагистрали» – с сетью АЗС, на которых будет продаваться водородное топливо. Муниципалитеты крупных городов, чьи жители испытывают серьезные проблемы с местом для парковки, создают специальные стоянки, предназначенные исключительно для таких автомобилей. Льготы предоставляются компаниям, создающим станции заправки альтернативным топливом.
Однако и сегодня нет никаких гарантий, что США смогут избавиться от нефтяной зависимости, делая ставку на водородное топливо. На сегодняшний день, в значительно более выигрышном положении находятся «гибридные» автомобили – сочетающие в себе традиционные бензиновые и электрические двигатели. По оценкам Джозефа Ромма, бывшего помощника министра энергетики США, автора книги «Водородное очковтирательство», скорее всего, автомобили, работающие на водороде, достигнут показателей (стоимость машины, стоимость одной заправки, уровень безопасности, количество вредных выбросов и т.д.), которые ныне демонстрируют гибридные автомобили (например, Toyota Prius) не ранее 2030 года.
Современный уровень развития технологий не позволяет использовать водород эффективно. Изготовление водородного топлива для автомобилей ныне в четыре раза дороже, чем производство автомобильного бензина в количестве, достаточном для производства аналогичного количества энергии. Кроме того, остается проблемой создание «водородной инфраструводород– сети заправочных станций и сервисных центров необходимых для обслуживания автомобилей работающих на водородном топливе. По оценкам Аргоннской национальной лаборатории, в масштабах США для этого требуется затратить более 600 млрд долл.
Кроме того, водород требует особо внимательного обращения. В 2001 году Массачусетский технологический институт опубликовал результаты исследования, согласно которым хранение и транспортировка водородных автомобильных двигателей в сто раз дороже, чем их бензиновых аналогов.
Иводородание Калифорнийского технологического института показало, если водород станет популярным автомобильным топливом, то его количество в атмосфере значительно увеличится. Это может привести к уничтожению озонового слоя, защищающегося Землю от ультрафиолетового излучения, глобальному изменению климата и активному размножению опасных микробов. Кроме товодородородные двигатели в процессе работы выделяют намного больше газов, разрушающих озоновый слой Земли (в частности, оксидов азота), чем современные модели традиционных бензиновых автомобилей. К этому выводу в 2003 году пришли исследователи Массачусетского технологического института
Добывать водород из воды очень дорого, поэтому в США 95% водорода производятся из Природного газа (метана). Это, в свою очередь, делает водородное топливо дороже, чем наиболее дешевый сегодня энергоноситель – Природный газ. Джозеф Ромм прогнозирует, что если США перейдут на водородные автомобили, то вместо зависимости от поставщиков черного золота Соединенные Штаты попадут в зависимость от поставщиков газа.
Впрочем, технологические и экологические препятствия использования водорода в качестве топлива не являются чем-то уникальным. Некогда похожие проблемы были у Природного газа, бензина ипоставщиковэнергии. К примеру, прошло более двух десятилетий поставщиковачала производства солнечных батарей до вывода их на уровень коммерческой окупаемости.
Альтернативные энергоносителибиотопливо
Биото́пливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).
Твердое биотопливо. Дрова - древнейшее топливо, используемое человечеством. В настоящее время для производства дров или биомассы выращивают энергетические леса, состоящие из быстрооборачиваемых растений.
Дрова́ — куски дерева, предназначенные для сжигания в печи, камине, топке или костре для получения тепла и света.
Из-за значительного роста цен на нефть в 2000-2008гг. население африканских стран сокращает потребление нефтяных топлив, и увеличивает использование дров, что приводит к уничтожению лесов. Например, Кения сократила потребление керосина для бытовых нужд с 389 тысяч тонн в 2005 году до 329 тысяч тонн в 2007.
Энергоносители биологического происхождения (главным образом навоз и т. п.) брикетируются, сушатся и сжигаются в каминах жилых домов и топках тепловых электростанций, вырабатывая дешёвое электричество, используемое в бытовых и производственных нуждах. В последнее время разработаны методы непосредственного получения электроэнергии с помощью специальных бактерий при сбраживании биологических отходов.
Древесные отходы прессуют в пеллеты, которые имеют форму цилиндрических или сферических гранул диаметром 8 — 23 мм и длиной 10 — 30 мм. Также кроме пеллет отходы прессуют в топливные брикеты.
Отходы биологического происхождения - необработанные или с минимальной степенью подготовки к сжиганию: опилки, щепа, кора, лузга, шелуха, солома и т.д.
Часто также: Топливный торф, твердые бытовые отходы и т.д.
Энергетический лес — деревья и кустарники выращиваемые для энергетических нужд.
Выращиваются быстрорастущие культуры — эвкалипт, тополь, ива, и другие. Испытано около 20 различных видов растений — древесных, кустарниковых и травянистых, в том числе кукуруза и сахарный тростник. Каждые 4—7 лет деревья срезают и годовой урожай может составлять около 7 тонн/гектар. Собранная биомасса используется для производства тепловой и электрической энергии, может служить в качестве сырья для производства жидких биотоплив.
В умеренной климатической зоне для энергетических лесов наиболее подходят разновидности быстрорастущих сортов тополя (волосистоплодного и канадского) и ивы (корзиночной и козьей), а в южной части Российской Федерации — акация и эвкалипта. Период ротации растений 6—7 лет.
Энергетические плантации биомассы предупреждают эрозию почвы, способствуют улучшению состояния окружающей среды. При сжигании биомассы на электростанции в атмосферу выбрасывается только тот СО2, который был поглощён растением во время роста.
Примеры использования. Крупнейшая в Европе электростанция, работающая на древесной биомассе, находится в Зиммеринг, Австрия. Мощность электростанции 66 МВт. Электростанция ежегодно потребляет 190 тысяч тонн биомассы, собираемой в радиусе 100 км от станции. Работа станции позволяет сократить ежегодные выбросы СО2 на 144 тысячи тонн.
Республика Германия ежегодно может производить в энергетических лесах 20 миллионов мі древесины.
В мае 2008 года Конгресс США принял закон H.R.2419, the Food, Conservation, and energy Act of 2008 по которому предусмотрено ежегодное финансирование энергетического лесоводства в США в размере $15 млн.
Топливные гранулы (пе́ллеты) (англ. pellets) — биотопливо, получаемое из торфа, древесных отходов и отходов сельского хозяйства. Представляет собой цилиндрические гранулы стандартного раз мера.
Сырьём для производства гранул могут быть торф, древесные отходы: кора, опилки, щепа и другие отходы лесозаготовки, а также отходы сельского хозяйства: отходы кукурузы, солома, отходы крупяного производства, лузга подсолнечника и т. д.
Применение. Древесные гранулы высокого качества (белые и серые) используют для отопления жилых домов путём сжигания в небольших котлах (Гранульные котлы), печах и каминах. Они, как правило, бывают диаметром 6—8 мм и длиной менее 50 мм. В Европе их чаще продают в 16—20 килограммовых мешках.
Спрос на древесные брикеты и гранулы, оборудование для их сжигания и производства растёт пропорционально ценам на такие традиционные виды топлива как нефть и газ. В некоторых странах Европы, где рынок альтернативных источников энергии наиболее развит, гранулами отапливается до 2/3 жилых помещений. Такое широкое распространение объясняется и экологичностью этого вида топлива — при сгорании выбросы CO2 равны поглощению этого газа во время роста дерева, а выбросы NOx и летучих органических компонентов значительно снижены благодаря использованию современных технологий сжигания.
Тёмные гранулы с большим содержанием коры сжигают в котлах большей мощности с целью получения тепла и электричества для населённых пунктов и промышленных предприятий. Тёмные гранулы могут быть большего диаметра. Их продают навалом политическими партиями от двух-трёх тысяч тонн и более.
Биоэтанол. Мировое производство биоэтанола в 2005 составило 36,3 млрд литров, из которых 45 % пришлось на Бразилию и 44,7 % — на США. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы.
В январе 2007 года, в своём ежегодном послании Конгрессу Дж. Буш предложил план «20 за 10». План предлагает сократить потребление бензина на 20 % за 10 лет, что позволит сократить потребление черного золота на 10 %. 15 % бензина предполагается заменить биотопливами. 19 декабря 2007 года президент США Дж. Буш подписал закон о Энергетической независимости и безопасности (EISA of 2007). EISA of 2007 предусматривает производство 36 миллиардов галлонов этанола в год к 2022 году. При этом 16 млрд галлонов этанола будет производиться из целлюлозы — не пищевого сырья.
Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Еthanol) на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины (русского перевода пока нет). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива. Автозаправки в Бразилии предлагают на выбор Е20 (или Е25) под видом обычного бензина, или «acool», азеотроп этанола (96 % С2Н5ОН и 4 % воды; выше концентрацию этанола невозможно получить путём обычной дистилляции). Пользуясь тем, что этанол дешевле бензина, недобросовестные заправщики разбавляют Е20 азеотропом, так что его концентрация может негласно доходить до 40 %. Переделать обычную машину в «flex-fuel» можно, но экономически нецелесообразно.
Критики применения этанола в качестве автомобильного топлива зачастую заявляют, что под плантации тростника часто вырубаются тропические леса Амазонки. Но сахарный тростник не растёт в бассейне Амазонки.
Более серьёзным является то, что при сгорании этанола в выхлопных газах двигателей появляются альдегиды (формальдегид и ацетальдегид), наносящие живым организмам не меньший ущерб, чем ароматические углеводороды. Причём, эти вещества появляются даже на каталитических дожигателях.
В настоящее время большая часть биоэтанола производится из кукурузы (США) и сахарного тростника (Бразилия). Сырьём для производства биоэтанола также могут быть различные с/х культуры с большим содержанием крахмала или сахара: маниок, картофель, сахарная свекла, батат, сорго, ячмень и т. д.
Большим потенциалом обладает маниок. Маниоку в больших количествах производят Китай, Нигерия, Таиланд. Начальная стоимость производства биоэтанола из маниоки в Таиланде — около $35 за баррель нефтяного эквивалента.
Лучшим климатом для производства сахарного тростника обладает Перу, страны Карибского бассейна. В больших количествах сахарный тростник могут также производить Индонезия и некоторые африканские страны, например, Мозамбик.
Этанол можно производить в больших количествах из целлюлозы. Сырьём могут быть различные отходы сельского и лесного хозяйства: пшеничная солома, рисовая солома, багасса сахарного тростника, древесные опилки и т. д.
Производство этанола из целлюлозы пока экономически не рентабельно.
Этанол как топливо. Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Еthanol) на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя прекрасно бегают на Е10 (некоторые утверждают что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. машины «Flex-Fuel» (к сожалению, русского перевода пока нет). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива. Автозаправки в Бразилии предлагают на выбор либо Е20 (иногда Е25) под видом обычного бензина, либо «acool» Е100, азеотроп этанола (96 % С2Н5ОН и 4 % (по весу) воды). Пользуясь тем, что этанол дешевле бензина, недобросовестные заправщики разбавляют Е20 азеотропом, так что его концентрация может негласно доходить до 40 %. Переделать обычную машину в «Flex-fuel» можно, но экономически нецелесообразно.
Критики производства биоэтанола заявляют, что для производства биоэтанола под плантации тростника часто вырубаются тропические леса. Но природные условия вокруг Амазонки не позволяют выращивать сахарный тростник. Тропические леса вырубаются нелегально. Нелегальные производители древесины вырубают участок леса. После ухода нелегальных дровосеков участок занимают фермеры для выпаса скота. Через 3 — 4 года выпас скота на этом участке прекращается, а участок занимают фермеры для производства сои и других культур.
Топливные смеси этанола. Е5, Е7, Е10 — смеси с низким содержанием этанола (5, 7 и 10 весовых процентов, соответственно), наиболее распространённые в наши дни. В этих случаях добавка этанола не только экономит бензин путём его замещения, но и позволяет удалить вредную окcигенирирующую добавку МТБЭ.
Е85 — смесь 85 % этанола и 15 % бензина. Стандартное топливо для т. н. «Flex-Fuel» машин, распространённых, в основном в Бразилии и США, и в меньшей степени — в других странах. Из-за более низкой энергоплотности продаётся дешевле, чем бензин.
Е95 — смесь 95 % этанола и 5 % топливной присадки. Организация Scania начала разрабатывать дизельный двигатель для автобуса, работающий на 95 % этаноле в середине 80-х годов. Создана программа испытаний городских автобусов с двигателями, работающими на 95 % этаноле — BEST (BioEthanol for Sustainable Transport). См. статью Автобусы Scania.
Е100 — формально 100 % этанол, однако в силу того, что этанол гигроскопичен, получение и использование этанола без остаточной концентрации воды невыгодно. Поэтому в большинстве случаев под Е100 подразумевают стандартную азеотропную смесь этанола (96 % С2Н5ОН и 4 % воды, (по весу); 96,5 % и 3,5 % в объёмных процентах). Путём обычной дистилляции невозможно получить более высокую концентрацию этанола.
Подробно номенклатура смесей этанола и бензина используемых в качестве топлива в разных странах и машинах описана в английской статье Википедии Топливные смеси этанола.
Топливный баланс этанола. В 2005 г. начали появляться исследования, в которых утверждалось, что этанол, производимый из кукурузы, имеет отрицательный энергетический баланс. То есть при производстве этанола энергии тратится больше, чем потом можно получить из этанола.
В 2006 г. в своём отчёте Департамент сельского хозяйства США (USDA) сообщил, что этанол имеет топливный баланс 1,24. То есть из этанола, произведённого из кукурузы, можно получить на 24 % энергии больше, чем было затрачено при производстве этанола.
Существуют различные способы оценки топливного баланса этанола. В некоторых оценках этанол имеет отрицательный энергетический баланс[источник не указан 152 дня], но топливный баланс бензина, всё равно хуже, чем у этанола. Для производства бензина требуется большое количество энергии: для разведки черного золота, её добычи, транспортировки (нужно строить танкеры и трубопроводы), переработки, доставки бензина и т. д.
В Бразилии багасса сахарного тростника используется в качестве топлива на электростанциях. Это позволяет увеличить топливный баланс этанола, производимого из сахарного тростника, до 8.
Топливный баланс этанола, производимого из целлюлозы может достигать 2.
Биометанол. Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива.
В начале 80-х рядом европейских стран совместно разрабатывался проект, ориентированный на создание промышленных систем с использованием прибрежных пустынных районов. Осуществлению этого проекта помешало общемировое снижение цен на нефть.
Первичное производство биомассы осуществляется путём культивирования фитопланктона в искусственных водоемах, создаваемых на морском побережье.
Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола.
Основными доводами в пользу использования микроскопических водорослей являются следующие:
- высокая продуктивность фитопланктона (до 100 т/га в год);
- в производстве не используются ни плодородные почвы, ни пресная вода;
- Процесс не конкурирует с сельскохозяйственным производством;
- энергоотдача процесса достигает 14 на стадии получения метана и 7 на стадии получения метанола;
С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.
Бутанол- C4H10O — бутиловый спирт. Бесцветная жидкость с характерным запахом. Широко используется в промышленности. В США ежегодно производится 1,39 млрд литров бутанола приблизительно на $1,4 млрд.
Бутанол начал производится в начале XX века с использованием бактерии Clostridia acetobutylicum. В 50-х годах из-за падения цен на нефть начал производиться из нефтепродуктов.
Бутанол не обладает коррозионными свойствами, может передаваться по существующей инфраструктуре. Может, но не обязательно должен, смешиваться с традиционными топливами. Энергия бутанола близка к энергии бензина. Бутанол может использоваться в топливных элементах, и как сырьё для производства водорода.
Сырьём для производства биобутанола могут быть сахарный тростник, свекла, кукуруза, пшеница, маниока, а в будущем и целлюлоза. Технология производства биобутанола разработана организацией DuPont Biofuels. Фирмы Associated British Foods (ABF), BP и DuPont строят в Британии завод по производству биобутанола мощностью 20 000 литров в год из различного сырья.
Диметиловый эфир (ДМЭ) — C2H6O.
Может производиться как из угля, Природного газа, так и из биомассы. Большое количество диметилового эфира производится из отходов целлюлозо-бумажного производства. Сжижается при небольшом давлении.
Диметиловый эфир — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Применение диметилового эфира не требует специальных фильтров, но необходима переделка систем питания (установка газобалонного оборудования, корректировка смесеобразования) и зажигания двигателя. Без переделки возможно применение на автомобилях с LPG-двигателями при 30 % содержании в топливе.
В июле 2006 года Национальная Комиссия Развития и Реформ (NDRC) (Китай) приняла стандарт использования диметилового эфира в качестве топлива. Китайское правительство будет поддерживать развитие диметилового эфира, как возможную альтернативу дизтопливу. В ближайшие 5 лет Китай планирует производить 5-10 млн тонн диметилового эфира в год.
Департамент транспорта и связи Москвы подготовил проект постановления городского правительства «О расширении применения диметилового эфира и других альтернативных видов моторного топлива».
Автомобили с двигателями, работающими на диметиловом эфире разрабатывают KAMAZ, Volvo, Nissan и китайская организация SAIC Motor.
Применение:
Используется для метилирования ароматических аминов
Используется для получения диметилсульфата
Пропеллент для аэрозольных баллонов
Растворитель и екстрагент
Хладагент
Топливо для газовой сварки и резки
Многоцелевое томливо
Используется как косметическое средство для удаления бородавок.
Применение в качестве топлива
Биодизель — топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации.
Для получения биодизельного топлива используются растительные или животные жиры. Сырьём могут быть рапсовое, соевое, пальмовое, кокосовое масло, или любого другого масла-сырца, а также отходы пищевой промышленности. Разрабатываются технологии производства биодизеля из водорослей.
Применение. Применяется на автотранспорте в чистом виде и в виде различных смесей с дизтопливом. В США смесь дизтоплива с биодизелем обозначается буквой B; цифра при букве означает процентное содержание биодизеля. В2 — 2 % биодизеля, 98 % дизтоплива. В100 — 100 % биодизеля.
Применение смесей не требует внесения изменений в двигатель.
Испания height="393" src="/pictures/investments/img252759_8-15_Zapravochnaya_stantsiya_prodayuschaya_biodizel_Ispaniya.jpg" title="8.15. Заправочная станция, продающая биодизель, Испания" width="570" />
Производство биодизеля из водоростей. Наиболее перспективным источником сырья для производства биодизеля являются водоросли. По оценкам Департамента Энергетики США с одного акра (4047мІ ~ 0,4га) земли можно получить 255 литров соевого масла, или 2400 литров пальмового масла. С такой же площади водной поверхности можно производить до 3570 барреля бионефти (1 баррель = 159 литров). По оценкам фирмы Green Star Products с 1 акра земли можно получить 48 галлонов соевого масла, 140 галлонов масла канолы и 10000 галлонов из водорослей.
Департамент Энергетики США с 1978 года по 1996 год исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для индекса промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 мІ. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 граммов водорослей с 1 мІ в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тыс. гектаров — это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах температур. В конце 90-х годов технология не попала в промышленное производство из-за низкой стоимости черного золота.
Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.
В 2006 году несколько компаний объявили о строительстве заводов по производству биодизеля из водорослей:
Global Green Solutions (Канада) по технологии организации Valcent Products (США) — мощность производства 4 млн. Баррелей бионефти в год;
Bio Fuel Systems (Испания);
De Beers Fuel Limited (ЮАР) по технологии Greenfuel Technologies corporation (США) — мощность производства 900 млн. Галлонов биодизеля в год (водоросли + подсолнечное масло)
Aquaflow Bionomic corporation (Новая Зеландия) — мощность производства 1 млн. литров биодизеля в год.
Достоинства. Хорошие смазочные характеристики. Минеральное дизельное топливо при устранении из него сернистых соединений теряет свои смазочные способности. Биодизель, несмотря на значительно меньшее содержание серы, характеризуется хорошими смазочными свойствами, что продлевает срок жизни двигателя. Это вызвано его химическим составом и содержанием в нём кислорода. Например, грузовик из Федеративной Республики Германии попал в Книгу рекордов Гиннеса, проехав более 1,25 миллиона километров на биодизельном топливе со своим оригинальным двигателем.
Более высокое Цетановое число
Для минерального дизельного топлива 42-45,
Для биодизеля (метиловый эфир) не менее 51.
Увеличение срока службы двигателя. При работе двигателя на биодизеле одновременно производится смазка его подвижных частей, в результате которой, как показывают испытания, достигается увеличение срока службы самого двигателя и топливного насоса в среднем на 60%. Важно отметить, что нет необходимости модернизировать двигатель.
Высокая температура воспламенения. Точка воспламенения для биодизеля превышает 150°С, что делает биогорючее сравнительно безопасным веществом.
Побочный товар производства - глицерин, имеющий широкое применение в промышленности. Очищенный глицерин используют для производства технических моющих средств (например, мыла). После глубокой очистки получают фармакологический глицерин, тонна которого на рынке стоит порядка 1 тыс. евро. При добавлении фосфорной кислоты к глицерину можно получить фосфорные удобрения.
Недостатки. В холодное время года необходимо подогревать топливо, идущее из топливного бака в топливный насос, или применять смеси 20 % биодизеля и 80 % солярки марки В20.
В Российской Федерации не существует единой государственной программы развития биодизельного топлива, но создаются региональные программы, например Алтайская краевая целевая программа «Рапс — биодизель». В Липецкой области создана ассоциация Производителей Рапсового Масла.
Плакислотыя строительство заводов по производству биодизеля в: Липецкой области, Татарстане, Алтайском крае, Ростовской области, Волгоградской области, Орловской области, Краснодарском крае, Омской области.
ОАО «РЖД» в 2006—2007 годах провела испытания биодизеля из рапсового масла на тепловозах депо Воронеж-Курский Юго-Восточной железной дороги. Представители РЖД заявили о готовности использовать биодизель в промышленных масштабах на своих тепловозах.
Разрешено 5% содержание в автомобильном топливе.
Биотоплива второго поколения — различные топлива, полученные различными методами пиролиза биомассы, или другие топлива, отличные от метанола, этанола, биодизеля.
Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.
Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской фирмы Dynamotive и SunDiesel германской организации CHOREN Industries GmbH.
По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Федеративной Республики Германии (ФРГ) в автомобильном топливе. К 2030 году, с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Начальная стоимость производства составит менее €0,80 за литр топлива.
Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) — исследовательская компания, объединяющая исследователей из 15 стран Европы, США и Канады.
Газообразное топливо. Биогаз — товар сбраживания органических отходов (биомассы), представляющий смесь метана и углекислого газа. Разложение биомассы происходит под воздействием бактерий класса метаногенов.
Состав и качество биогаза. 50—87 % метана, 13—50 % CO2, незначительные примеси H2 и H2S. После очистки биогаза от СО2 получается биометан. Биометан — полный аналог Природного газа, отличие только в происхождении.
Поскольку только метан поставляет энергию из биогаза, целесообразно, для описания качества газа, выхода газа и количества газа все относить к метану, с его нормируемыми показателями. Объем газов зависит от температуры и давления. Высокие температуры приводят к растяжению газа и к уменьшаемому вместе с объемом уровню калорийности и наоборот. Кроме того при возрастании влажности калорийность газа также снижается. Чтобы выходы газа можно было сравнить между собой, необходимо их соотносить с нормальным состоянием (температура 0°C, атмосферное давление 1,01325 bar, относительная влажность газа 0%). В целом данные о производстве газа выражают в литрах (л) или м3 метана на кг oрганического сухого вещества (оСВ), это намного точнее и красноречивее нежели данные в м3 биогаза в м3 свежего субстрата.
Перечень органических отходов, пригодных для производства биогаза: навоз, птичий помёт, зерновая и меласная послеспиртовая барда, пивная дробина, свекольный жом, фекальные осадки, отходы рыбного и забойного цеха (кровь, жир, кишки, каныга), трава, бытовые отходы, отходы молокозаводов — соленая и сладкая молочная сыворотка, отходы производства биодизеля — технический глицерин от производства биодизеля из рапса, отходы от произвоM3тва соков — жом фруктовый, ягодный, овощной, виноградная выжимка, водоросли, отходы производстваM3рахмала и пM3оки — мезга и сироп, отходы переработки картофеля, производства чипсов — очистки, шкурки, гнилые клубни, кофейная пульпа.
Выход биогаза зависит от содержания сухого вещества и вида используемого сырья. Из тонны навоза крупного рогатого скота получается 50—65 мі биогаза с содержанием метана 60 %, 150—500 мі биогаза из различных видов растений с содержанием метана до 70 %. Максимальное количество биогаза — это 1300 мі с содержанием метана до 87 % — можно получить из жира.
Различают теоретический (физически возможный) и технически-реализуемый выход газа. В 1950-70-х годах технически возможный выход газа составлял всего 20-30 % от теоретического. Сегодня применение энзимов, бустеров для искусственной деградации сырья (например, ультразвуковых или жидкостных кавитаторов) и других приспособлений позволяет увеличивать выход биогаза на самой обычно установке с 60 % до 95 %.
В биогазовых расчётах используется понятие сухого вещества (СВ или английское TS) или сухого остатка (СО). Вода, содержащаяся в биомассе, не даёт газа.
На практике из 1 кг сухого вещества получают от 300 до 500 литров биогаза.
Чтобы посчитать выход биогаза из конкретного сырья, необходимо провести лабораторные испытания или посмотреть справочные данные и определить содержание жиров, белков и углеводов. При определении последних важно узнать процентное содержание быстроразлагаемых (фруктоза, сахар, сахароза, крахмал) и трудноразлагаемых веществ (например, целлюлоза, гемицеллюлоза, лигнин). Определив содержание веществ, можно вычислить выход газа для каждого вещества по отдельности и затем сложить.
Раньше, когда не было науки о биогазе и биогаз ассоциировался с навозом, применяли понятие «животной единицы». Сегодня, когда биогаз научились получать из произвольного органического сырья, это понятие отошло и перестало использоваться.
Кроме отходов биогаз можно производить из специально выращенных энергетических культур, например, из силосной кукурузы или сильфия, а также водорослей. Выход газа может достигать до 500 мі из 1 тонны.
Свалочный газ — одна из разновидностей биогаза. Получается на свалках из муниципальных бытовых отходов
Производство. Существуют промышленные и кустарные установки. Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространённый промышленный метод — анаэробное сбраживание в метантенках.
Хорошая биогазовая установка должна иметь необходимые части:
Емкость гомогенизации
Загрузчик твердого (жидкого)сырья
Реактор
Мішалки
Газгольдер
Система смешивания воды и отопления
Газовая система
Насосная станция
Сепаратор
Приборы контроля
КИПиА с визуализацией
Система безопасности
Биогаз используют в качестве топлива для производства: электричества, тепла или пара, или в качестве автомобильного топлива.
Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. Биогазовая установка может заменить ветеринарно-санитарный завод, т. е. падаль может утилизироваться в биогаз вместо производства мясо-костной муки.
Среди промышленно развитых стран ведущее место в производстве и использовании биогаза по относительным показателям принадлежит Дании — биогаз занимает до 18 % в её общем энергобалансе. По абсолютным показателям по количеству средних и крупных установок ведущее место занимает Федеративная Республика Германия — 8000 тыс. шт. В Западной Европе не менее половины всех птицеферм отапливаются биогазом.
В Индии, Вьетнаме, Непале и других странах строят малые (односемейные) биогазовые установки. Получаемый в них газ используется для приготовления пищи.
Больше всего малых биогазовых установок находится в Китае — более 10 млн (на конец 1990-х). Они производят около 7 млрд мі биогаза в год, что обеспечивает топливом примерно 60 млн крестьян. В конце 2006 года в Китае действовало уже около 18 млн биогазовых установок. Их применение позволяет заменить 10,9 млн тонн условного топлива.
В Индии с 1981 года до 2006 года было установлено 3,8 млн малых биогазовых установок.
В Непале существует программа поддержки развития биогазовой энергетики, благодаря которой в сельской местности к концу 2006 года было создано более 100 тысяч малых биогазовых установок.
Автомобильный транспорт. Volvo и Scania производят автобусы с двигателями, работающими на биогазе. Такие автобусы активно используются в городах Швейцарии: Берн, Базель, Женева, Люцерн и Лозанна. По прогнозам Швейцарской Ассоциации Газовой индустрии к 2010 году 10 % автотранспорта Швейцарии будет работать на биогазе.
Муниципалитет Осло в начале 2009 года перевёл на биогаз 80 городских автобусов. Стоимость биогаза составляет €0,4 — €0,5 за литр в бензиновом эквиваленте. При успешном завершении испытний на биогаз будут переведены 400 автобусов.
Потенциал. Россия ежегодно накапливает до 300 млн т в сухом эквиваленте органических отходов: 250 млн т в сельскохозяйственном производстве, 50 млн т в виде бытового мусора. Эти отходы могут быть сырьём для производства биогаза. Потенциальный объём ежегодно получаемого биогаза может составить 90 млрд мі.
В США выращивается около 8,5 миллионов коров. Биогаза, получаемого из их навоза, будет достаточно для обеспечения топливом 1 миллиона автомобилей.
Потенциал биогазовой индустрии Республики Германии оценивается в 100 миллиардов кВт·ч энергии к 2030 году, что будет составлять около 10% от потребляемой страной энергии.
Биоводород — водород, полученный из биомассы термохимическим, биохимическим или другим способом, например водорослями.
Биотоплива третьего поколения - топлива, полученные из водорослей. Департамент Энергетики США с 1978 года по 1996 года исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для индекса пром производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 мІ. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 гр. водорослей с 1 мІ в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тысяч гектаров — это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах температур. В конце 1990-х годов технология не попала в промышленное производство из-за низкой стоимости черного золота.
Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.
Углеводороды. Ряд микроорганизмов, например Botryococcus braunii, способны накапливать углеводородов до 40 % общего сухого веса. В основном они представлены изопреноидными углеводородами.
Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. Например, при производстве этанола из кормовой кукурузы барда используется для производства комбикорма для скота и птицы. При производстве биодизеля из сои или рапса жмых используется для производства комбикорма для скота. То есть производство биотоплива создаёт ещё одну стадию переработки сельскохозяйственного сырья.
По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд человек. Продовольственная и сельскохозяйственная фирма ООН (FAO) в своем отчете за 2005 г. говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, и улучшить безопасность пищевых продуктов, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта черного золота. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн га из 63,5 млн га потенциально пригодных земель.
В Индонезии и Малайзии для создания пальмовых плантаций была вырублена немалая часть тропических лесов. То же самое произошло на Борнео и Суматре. Тысячи местных жителей были изгнаны со своих земель. Причиной стала гонка за производством биодизеля – топлива, созданного на основе растительных или животных жиров, в качестве альтернативы дизтопливу (рапсовое масло в качестве топлива может использоваться в чистом виде). Невысокая начальная стоимость и небольшие энергозатраты – то, что нужно для производства альтернативного топлива из полутехнических масличных культур.
Распространение. По оценкам Worldwatch Institute в 2007 году во всём мире было произведено 54 миллиарда литров биотоплив, что составляет 1,5% от мирового потребления жидких топлив. Производство этанола составило 46 миллиардов литров. США и Бразилия производят 95% мирового объёма этанола.
Биотопливо в Европе. Европейская комиссия поставила задачу использовать к 2020 году альтернативные источники энергии как минимум в 10% транспортных средств. Есть также промежуточная цель в 5,75% к 2010 г.
В ноябре 2007 в Англии было создано Агентство по возобновляемому топливу (англ. Renewable Fuels Agency), которое должно контролировать введение требований к использованию возобновляемого топлива. Председателем комитета стал Эд Галлахер (Ed Gallaher), бывший исполнительный директор Агентства по окружающей среде.
Дебаты по поводу жизнеспособности биотоплива на протяжении 2008 года привели к повторному всестороннему исследованию проблемы комиссией, возглавляемой Галлахером. Было рассмотрено непрямое влияние использования биотоплива на производство пищевых продуктов, разнообразие выращиваемых культур, цены на продовольствие и площадь сельскохозяйственных земель. В отчете предлагалось снижение динамики внедрения биотоплива до 0,5% в год. Цель в 5 процентов таким образом должна быть достигнута не ранее чем в 2013/2014 г., на три года позже, чем было изначально предложено. Более того, дальнейшее внедрение должно быть сопряжено с обязательным требованием к компаниям применять новейшие технологии, ориентированные на топливо второго поколения.
Экономический эффект. По оценкам bank Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%
Потенциал. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385 — 472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.
Стандарты. 1 января 2009 года в Российской Федерации введен в действие ГОСТ Р 52808-2007 «Нетрадиционные технологии. Энергетика биоотходов. Термины и определения». Приказ N 424-ст о введении стандарта был утвержден Ростехрегулированием 27 декабря 2007 года.
Стандарт разработан Лабораторией возобновляемых источников энергии географического факультета МГУ им. М. В. Ломоносова и устанавливает термины и определения основных понятий в области биотоплива, с упором на жидкие и газообразные виды топлива.
Топливные брикеты
Топливные брикеты, изготовленные методом шнекового прессования, не включают в себя никаких вредных веществ в т.ч. клеев и других связующих добавок, золы после сгорания брикета практически не остается.
Прочность приобретается за счет содержащегося в древесине вещества - лигнина, который расплавляется под воздействием температуры и нагрева.
Топливные брикеты имеют широкое применение и могут использоваться для всех видов топок, котлов, отлично горят в каминах и печках, грилях и тд. Хорошим качеством брикетов является постоянство температуры при сгорании, на протяжении 4 часов, также при их использовании Вы и Ваша одежда останетесь чистыми в отличии от торфобрикетов и угля.
Рынок западной Европы. На сегодня основное применение топливных брикетов имеют именно там. Европейских партнеров интересует в первую очередь фиксированный объем и стабильное выполнение условий поставок российской стороной. Чем больше вы можете выпускать брикетов, тем больше шансов вам найти хорошего партнера и по хорошей цене.
Что бы иметь шанс выйти на прямого покупателя вам надо производить не менее 1000 тон в месяц.
Отечественный рынок. По аналогии с Европой, все хорошее оттуда рано или поздно приходит и к нам, поэтому топливные брикеты будут продаваться в супермаркетах, на заправках, будут работать компании по доставке топливных брикетов в коттеджи.
Топливные брикеты имеют ряд преимуществ перед каменным углем и дровами, имеют высокую калорийность, долго горят, практически не оставляют золы, выделяют значительно меньше CO, не пачкаются, удобны в складировании и перевозке, внешне эстетично выглядят, и они могут гореть разным цветом если добавить небольшие добавки при производстве брикетов. Добавки обсалютно экологически чисты. Упаковку брикетов вполне можно взять с собой на природу вместо дров.
В пересчете на килокалорию (по крайней мере если говорить о коттеджных поселках вокруг больших городов) стоят дешевле и уступают (пока!) у нас только газу, который.есть не везде.
На сегодня на россиийском рынке топливных брикетов производитпреимуществнь большое количество. Все производители удовлетворяются экспортными поставками. Другая картина, например, в Беларуси и Украине, где брикеты можно видеть на заправках и в гипермаркетах.
Переработка в древесный уголь. Из брикетов, с помощью углевыжигательной печи, получается древесный уголь, по качеству превосходящий березовый. Этот уголь применяется как для бытовых целей, так и для нужд промышленности, в частности в металлургии, в производстве кремния и т.д., а также поставляется на экспорт, большой интерес к нему, помимо Европы, в Японии, Корее и в странах восточной азии.
Топливные брикеты — это биотопливо для твердотопливных котлов, которое производится из возобновляемых природных источников. Представляют собой товар прессования отходов агропромышленного комплекса, древесины, торфа.
Технология производства. В основе технологии производства топливных брикетов лежит процесс прессования шнеком отходов (шелухи подсолнечника, гречихи и т. п.) и мелко измельченных отходов древесины (опилок) под высоким давлением при нагревании от 250 до 350 С°. Получаемые топливные брикеты не включают в себя никаких связующих веществ, кроме одного натурального — лигнина, содержащегося в клетках растительных отходов. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится более прочной, что немаловажно для транспортировки брикета.
Применение. Топливные брикеты применяются в качестве твердого топлива для каминов и печей любых видов, в том числе твердотопливных котлов систем отопления. Так как топливные брикеты экологически чистый товар и горят практически бездымно, идеально использовать их для обогрева жилых помещений, бань, палаток, теплиц, овощных ям и т. д.
Газ на дне океана
В массовом сознании альтернативными энергоносителями являются исключительно возобновляемые источники энергии – Солнце, ветер, биомасса, морской прибой и тому подобные. Есть, однако, и ещё один весьма перспективный, хоть и не возобновляемый энергоноситель: метан с морского дна. Многие о его существовании и не догадываются, что, в общем-то, простительно: ведь ещё совсем недавно об этом не знали и учёные. Между тем, на морском дне хранятся огромные запасы метана! Правда, он находится там в связанном виде – в форме твёрдых гидратов.
Образование гидратов метана, то есть его соединений с водой, происходит под воздействием высокого давления и низкой температуры – при условиях, вполне типичных для океанских глубин. Там, где океаническая плита, сдвигаясь, уходит под континентальную, возникают зоны мощнейшего сжатия. Они-то и выдавливают наружу метан, образующийся в толще органических отложений. Одна из таких тектонических зон находится у западного побережья Северной Америки. Экспедиция, отправившаяся туда на поиски гидрата метана, действительно его нашла, однако главной сенсацией стало то, что огромные его залежи были обнаружены непосредственно на поверхности морского дна. Профессор Юрген Минерт, научный сотрудник немецкого Исследовательского центра «Geomar» со штаб-квартирой в Киле, говорит: «Мы имеем основания считать, что газовая смесь, заключённая в этой породе, на 98...99 процентов состоит из метана. Когда проба грунта с морского дна поднимается на борт, газ тут же начинает улетучиваться. Чёрные пятна свидетельствуют о повышенном содержании углерода в осадочных отложениях. Иначе говоря, метан, обнаруженный на морском дне, является товаром разложения органической материи, результатом отмирания живых организмов, то есть имеет биогенное, а не термогенное происхождение».
Образцы газогидрата, добытые у побережья США, с тех пор бережно сохраняются в специальных резервуарах-холодильниках и изучаются – например, в Институте полярных и морских исследований имени Альфреда Вегенера в Бремерхафене. Здесь расположена одна из немногочисленных лабораторий, в которых созданы условия, обеспечивающие сохранность газогидрата в первозданном виде. То есть в помещении поддерживается температура –27єC, так что исследователи вынуждены работать в специальных комбинезонах и тёплых перчатках. Поднятые со дна моря куски газогидрата внешне напоминают вывалянные в грязи куски льда. Собственно, это и есть лёд с высоким содержанием метана. Образцы нарезают на тончайшие пластинки, каждый срез фотографируют, и только после этого гидрат подвергают химическому анализу. Йенс Грайнерт, сотрудник Исследовательского центра «Geomar», поясняет: «По большей части, это метан. На 98% метан, но и остальное – это может быть сероводород, углекислый газ, – нас очень интересует, поскольку от примесей во многом зависит, при каких условиях гидрат стабилен, а при каких – нет. Зная это, можно браться за исследование вопроса, когда и как гидраты метана образуются, когда и как распадаются».
Немалый интерес к работам геофизиков проявляют и климатологи. В их глазах метан – не столько ценный энергоноситель, сколько один из главных виновников глобального потепления.
«Метан, как известно, третий по значимости парниковый газ. Принято считать, что важным источником метана являются океаны и – особенно – периферийные моря. Но зачастую учёные не могут даже качественно оценить, выделяет ли море метан в атмосферу или же, напротив, связывает атмосферный метан, образуя гидраты. А уж о количественной оценке этих процессов сегодня и говорить не приходится. Между тем, это очень важный вопрос. И мы надеемся, что наши новые приборы помогут найти на него ответ, – говорит Клаус Вайткамп, сотрудник Исследовательского центра «GKSS» в Геестхахте, специализирующегося на создании высокочувствительных газовых сенсоров. Но каковы же запасы метана в газогидратах? Могут ли они оказать существенное влияние на климат – например, если в результате глобального потепления залегающие на дне под толщей воды гидраты начнут распадаться на составные компоненты, и весь метан уйдёт в атмосферу?» Сотрудник Исследовательского центра «Geomar» Герхард Борман говорит: «Существуют оценки, согласно которым около 50% всего имеющегося на Земле углерода заключено в этих гидратах. Вы только представьте себе, мы столько говорили о содержании углекислого газа в атмосфере, о круговороте углерода в природе, и до сих пор не учитывали столь важное слагаемое этого процесса! Впрочем, все расчёты, которыми мы пользуемся, носят весьма приблизительный характер. Прогнозируя, где и в каком количестве могут быть обнаружены подводные газогидратные поля, мы исходим из сейсмических наблюдений и геофизических исследований. Но чтобы повысить достоверность прогнозов, необходимо произвести пробные бурения и замеры в тех районах океана, где предсказано наличие гидратов метана, и проанализировать полученные результаты. Пока мы лишь в самом начале пути, но думаю, что исследование газогидратов станет ключевой темой на ближайшие годы, а возможно, и десятилетия».
Поиски гидратов метана ведутся в самых различных районах мирового океана и с привлечением самой современной специальной техники. Примечательно, что при этом геофизики не жалеют сил на изучение придонной флоры и фауны. Дело в том, что обитатели морского дна могут служить своего рода индикаторами, указывающими на наличие в недрах месторождения газогидрата. Сотрудник Исследовательского центра «Geomar» биолог Петер Линке рассказывает: «Между известковыми глыбами, возникшими на дне в результате геохимических и тектонических процессов, происходит истечение метаносодержащих жидкостей, которые являются основой для существования определённого вида моллюсков. Наличие этих моллюсков и является для нас верным признаком, что тут из недр выделяется метан. Конечно, моллюски не могут питаться метаном как таковым – он для них так же ядовит, как и для человека. Здесь мы имеет дело с типичным примером симбиоза: метаносодержащая жидкость усваивается особыми бактериями, живущими в мантии моллюсков. А сами моллюски питаются отходами жизнедеятельности этих бактерий, что и позволяет им существовать на такой глубине, куда солнечный свет практически не проникает. Естественно, моллюски стремятся поселиться как можно ближе к источнику продовольствия, то есть к тем трещинам и щелям в известковых отложениях, из которых и происходит истечение метаносодержащих жидкостей. В свою очередь, эти моллюски служат пищей для некоторых других видов морской фауны. То есть те места, в которых, по нашим оценкам, существуют условия для образования газогидратов, являются своего рода оазисами в пустыне морских глубин».
Моллюски, извлечённые со дна моря во время экспедиции к побережью США, подверглись, разумеется, самому пристальному исследованию. Их препарировали, затем из тканей раковины и мантии учёные выделили углерод, связав его в углекислый газ, и проанализировали с помощью масспектрометра. Высокое содержание изотопа углерода С12 позволило сделать вывод о том, что моллюски действительно питались за счёт жидкостей, омывающих газогидратные месторождения.
А вот найти этих самых моллюсков оказалось непросто: многочисленные пробы грунта со дна моря в тех местах, где – исходя из геофизических соображений – предполагались месторождения газогидратов, долгое время не давали положительного результата. Почему?
«Либо недостаточно настойчиво искали, либо источники метана, которые некогда давали пищу и служили основой существования этих моллюсков, сегодня обеднели или вовсе иссякли. Для моллюсков это катастрофа, они вымирают. Для нас же это свидетельство того, что источники бедны или пусты. Если мы обнаруживаем большую колонию живых моллюсков, это даёт нам основания полагать, что здесь имеются значительные источники метана. Если же никаких моллюсков нет или мы находим только пустые раковины, значит, интенсивного выделения метаносодержащих жидкостей здесь, скорее всего, не наблюдается, – продолжает Петер Линке, участник экспедиции, которая обнаружила богатые месторождения гидрата метана и сопутствующие им колонии моллюсков и у побережья США, и в Аравийском море у берегов Пакистана».
Однако наибольший интерес учёных вызывают холодные моря Крайнего Севера и Крайнего Юга. В частности, Охотское море. Профессор Эрвин Зюсс, долгие годы руководивший Исследовательским центром «Geomar», особо подчёркивает климатологический аспект: «Источником метана в Охотском море, как и во многих других периферийных морях, являются гидраты. Охотское море более 9-ти месяцев в году покрыто льдом, и поднимающийся со дна метан удерживается этим ледяным покровом. Весной, когда лёд начинает таять, в атмосферу в считанные недели уходят огромные массы метана. Учитывая важность метана как парникового газа, следует очень внимательно изучить влияние этих сезонных выбросов на глобальный климат. Это поможет разобраться в тенденциях и механизмах климатических изменений, происходящих на Земле».
Чтобы понять, изменения какого масштаба имеет в виду Эрвин Зюсс, следует принять во внимание такую цифру: из одного кубометра гидрата, извлечённого со дна морского, выделяется 164 кубометра газообразного метана! То есть речь идёт, с одной стороны, о скрытом в гидратах метана колоссальном энергетическом потенциале, а с другой стороны, об огромной опасности, которую эти гидраты могут представлять для климата планеты. А то, что месторождения газогидратов на морском дне действительно огромны, у специалистов не вызывает сомнений. Ганс Фаленкамп, профессор кафедры природоохранных технологий Дортмундского университета, говорит: «Запасы газогидратов геологи оценивают, соотнося их с суммарным объёмом разведанных на сегодняшний день месторождений черного золота, Природного газа и угля. Их вывод таков: залежи метана на дне морей и океанов обладают вдвое большими энергоресурсами, чем все прочие ископаемые энергоносители вместе взятые».
А это ни много ни мало – 10 тысяч миллиардов тонн. Однако технологии, пригодной для широкомасштабной добычи этого бесценного клада со дна моря, до недавнего времени не существовало. Коллега профессора Ганса Фаленкампа по кафедре природоохранных технологий Дортмундского университета – Хайко Юрген Шультц – говорит: «Предложенные до сих пор способы добычи были недостаточно эффективными. Произведённые расчёты показали, что метан, поднятый этими способами со дна моря, не может конкурировать с Природным газом, добываемым традиционными методами».
Помимо низкой экономичности, есть и вторая проблема – безопасность. Залежи газогидратов располагаются на крутых склонах, на глубинах от 300 до 1000 метров и являются фактором, стабилизирующим морское дно в этих геологически-активных регионах. Широкомасштабная разработка месторождений может вызвать подводные оползни и, как следствие, разрушительные приливные волны – цунами. Кроме того, нельзя не считаться с возможностью аварийных выбросов огромных масс метана в атмосферу, что чревато грандиозной экологической катастрофой, не говоря уже об угрозе здоровью и жизни персонала, обслуживающего добывающее оборудование. Но Хайко Юрген Шультц предложил недавно новый и, как он считает, весьма перспективный метод добычи газогидратов. По крайней мере, расчёты на компьютерной модели выглядят многообещающе: «Мы представили технологию, которая позволит обеспечить высокую эффективность и значительные объёмы добычи».
Чтобы получить газообразный метан из твёрдых газогидратов, их нужно расплавить, то есть нагреть. Проект Хайко Юргена Шультца предполагает прокладку специального трубопровода с платформы на поверхности моря до залежей газогидратов на морском дне. Особенность трубопровода в том, что он состоит из труб с двойной стенкой. Это как бы два трубопровода, из которых один пропущен сквозь другой. Хайко Юрген Шультц поясняет: «По принципу действия это напоминает кофеварку. По внутренней трубе мы подаём морскую воду, нагретую до 30...40 градусов, непосредственно к месторождению газогидратов. Те плавятся, при этом из них выделяются пузырьки газообразного метана, которые вместе с водой поднимаются по внешней трубе наверх, к платформе. Там метан отделяется от воды и подаётся в цистерны или в магистральный трубопровод, а тёплая вода снова закачивается вниз, к залежам газогидратов».
Расчёты показывают, что при использовании такой технологии количество выработанной энергии в 40 раз превысит то количество, которое придётся затратить на добычу. То есть экономичность нагазопроводаобстоит дело с экологичностью? Вопрос важный хотя бы уже потому, что метан – однефтепроводавредоносных для климата газов, – напоминает профессор Фаленкамп: «Все парниковые газы сравнивают, как правило, с углекислым газом. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность метана составит 23 единицы».
Но если верить компьютерным расчётам, никаких аварийных выбросов метана ожидать не приходится. Более того, Хайко Юрген Шультц уверен, что его технология сводит на нет также и угрозу подводных оползней. В настоящее время он ищет инвесторов, чтобы реализовать свою идею на практике. Стоимость проекта оценивается в 100 миллионов евро.
Источники
Сергиенко С. Р., высокомолекулярные соединения черного золота, 2 изд., М., 1964.
Энглин Б. А. Применение жидких топлив при низких температурах, 3 изд., М., 1980.
ГОСТ 10585-99 Топливо нефтяное. Мазут. Технические условия, Минск (протокол № 15-99 от 28 мая 1999 г.)
Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. — М.: Атомиздат, 1979.
http://ru.wikipedia.org/
физика
Энциклопедия инвестора. 2013.